已知抛物线y2=2px直线y=kx 2与e交于ab两点且
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:00:21
(I)由题意,抛物线C与直线l1:y=-x的一个交点的坐标为(8,-8),代入抛物线方程可得64=2p×8,∴2p=8,∴抛物线C方程为y2=8x;(II)∵不过原点的直线l2与l1垂直,∴可设l2的
由直线l过抛物线的焦点F(p2,0),得直线l的方程为x+y=p2.由x+y=p2y2=2px消去,得y2+2py-p2=0.由题意得△=(2p)2+4p2>0,y1+y2=−2p,y1y2=−p2.
经过抛物线Y^2=2px(p>0)的焦点直线交抛物线于P1(x1,y1),P2(x2,y2)两点焦点坐标(p/2,0)设直线为x-p/2=kyy=k(x-p/2)分别代入(x1,y1)(x2,y2)得
(1)抛物线的焦点为(p/2,0),设直线方程为x=my+p/2,代入抛物线方程得y^2=2p(my+p/2),化简得y^2-2pmy-p^2=0,因为y1、y2是方程的两个根,因此,由二次方程根与系
y=x+1x=y-1y^2=2px=2p*(y-1)y^2-2px+2p=0y1+y2=2p,y1*y2=2p(y1-y2)^2=(x1-x2)^2=(2p)^2-4*2p=4p^2-8p(x1-x2
把l:y=(x-p/2)tana,代入y^2=2px,得x^2*(tana)^2-x[p(tana)^2+2p]+(1/4)p^2*(tana)^2=0,△=p^2*[(tana)^2+2]^2-p^
设A(x1,y1),B(x2,y2),y=-x+1,x=1-y,则:y2=2p(1-y),y2+2py-2p=0,y1+y2=-2p,y1y2=-2p,x1x2=(1-y1)(1-y2)=1-(y1+
因抛物线的焦点为(p/2,0),这也是椭圆的右焦点,所以椭圆的半焦距c=p/2.2c=p.又两条曲线的交点连线必垂直于X轴,即为直线x=p/2.,代入抛物线方程可得y=+-p.所以交点为(p/2,p)
A.4焦点(p/2,0)直线方程y=k(x-p/2)y^2=k^2x^2-k^2px+k^2p^2/4-2px=0k^2x^2-(k^2p+2p)x+k^2p^2/4=0x1x2=p^2/4(y1^2
将A(1,2)带入ax+y-4=0和y2=2px得出p=2a=2将两式连立得出另一个交点(4,-4)
因为点A(1,2)是抛物线C:y2=2px与直线l:y=k(x+1)的一个交点,所以4=2p,2=2k所以p=2,k=1,所以抛物线方程为y2=4x,l的方程为x-y+1=0所以抛物线的焦点为(1,0
你好,你的答案是对的.理由如下:这道题抛物线的焦点坐标是(p/4,0).因为直线y=2x+b过焦点F和A点,所以,A点坐标为(0,-p/2)又∵S△OAF=1,即1/2*p/4*|-p/2|=1,解方
焦点(p/2,0)设过焦点的直线方程为:y/(x-p/2)=1/nx=ny+p/2代入抛物线方程y^2=2p(ny+p/2)y^2-2pny-p^2=0根据伟达定理;y1y2=-p^2y1+y2=2p
|AB|=x1+p/2+x2+p/2=x1+x2+p(x1+x2)=9-p|AB|=√(k^2+1)|x1-x2|=3|x1-x2|=9(x1-x2)^2=9y=k(x-p/2)k^2(x^2-px+
你题是不是抄错了,A、B两点在第一象限,以弦长AB为直径的圆肯定不过原点
焦点是(p/2,0)在x+y-1=0p/2+0-1=0p=2所以y²=4x
设A(x1,y1),B(x2,y2)联立:y^2=2px与y=x-1,消去y,得到:x^2-(2+2p)x+1=0则x1+x2=2+2p,y1+y2=x1-1+x2-1=x1+x2-2=2p,则A,B
焦点(p/2,0)设直线AB:y=2√2(x-p/2)代入y²=2px得4x²-5px+p²=0x1+x2=5p/4|AB|=x1+x2+p=9p/4=9p=4即抛物线y
当直线斜率存在时,设直线方程为y=k(x-p/2)与y^2=2px联立,消去x,得y^2=2p(y/k+p/2)即y^2-2py/k-p^2=0所以y1*y2=-p^2,当直线斜率不存在即与x轴垂直时
(1)∵y2=2px(p>0)的准线方程为x=−p2,∴p=1.∴抛物线方程为y2=2x.(2)证明:将x=y+2代入y2=2x,消去x,整理,得y2-2y-4=0,设M(x1,y1),N(x2,y2