已知抛物线Y2=4X上的点M到焦点的距离为5
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 08:01:30
由抛物线的定义d1=MF,M到直线l2:3x-4y+12=0的距离d2=MN,其中N为垂足,则d1+d2≥FM≥|3×1−4×0+12|5=3,当且仅当N,M,F三点共线时取到等号.故答案为3.
如图点P到准线的距离等于点P到焦点F的距离,从而P到y轴的距离等于点P到焦点F的距离减1.过焦点F作直线x-y+4=0的垂线,此时d1+d2=|PF|+d2-1最小,∵F(1,0),则|PF|+d2=
p=2,焦点F(1,0)由抛物线定义,P到抛物线准线的距离等于P到焦点F的距离.过F作直线x+2y+10=0的垂线L,则当P是垂线L与抛物线的交点时,d1+d2最小,且最小值为F到直线x+2y+10=
如图点P到准线的距离等于点P到焦点F的距离,过焦点F作直线x+2y+10=0的垂线,此时d1+d2最小,∵F(1,0),则d1+d2=|1+10|12+22=1155,故选C.
圆C:x2+y2+6x+8y+21=0即(x+3)2+(y+4)2=4,表示以C(-3,-4)为圆心,半径等于2的圆.抛物线y2=8x的准线为l:x=-2,焦点为F(2,0),根据抛物线的定义可知点P
(2,4)从抛物线的焦点射出的光线经反射必然平行于对称轴射出
F(-2,0),AF=4,点A到准线的距离=4所以点A的横坐标为-2,纵坐标为±4O点关于准线的对称点B坐标为(4,0)FO=2,OB=4当A,P,B三点共线时,pa+po的最小值,最小值为ABAB=
设P=(y²∕10,y),距离d²=(y²/10-m)²+y²可求d²的最小值令D=d²,Y=y²,对D求导,或者将方程
(1)抛物线y2=2px的准线为x=−p2,于是4+p2=5,∴p=2.∴抛物线方程为y2=4x.(2)∵点A的坐标是(4,4),由题意得B(0,4),M(0,2),又∵F(1,0),∴kFA=43;
由题意得F(2,0),准线方程为x=-2,设点M到准线的距离为d=|PM|,则由抛物线的定义得|MA|+|MF|=|MA|+|PM|,故当P、A、M三点共线时,|MF|+|MA|取得最小值为|AP|=
设抛物线的准线为l,过M作MB⊥l于B,过A作AC⊥l于C,由抛物线定义知|MF|=|MB|⇒|MA|+|MF|=|MA|+|MB|≥|AC|(折线段大于垂线段),当且仅当A,M,C三点共线取等号,即
抛物线y=-2x2-8x+m的对称轴为x=-2,且开口向下,x=-2时取得最大值.∵-4<-1,且-4到-2的距离大于-1到-2的距离,根据二次函数的对称性,y3<y1.∴y3<y1<y2.∴故选C.
由y=(x+m)²+k可以知道抛物线关于直线x=-m对称,开口向上,抛物线最低点再(-m,k)画个图就能看出来随着Y的增大,抛物线上的点到x=-m的距离随着增大,所以y1>y2
y=x+10还是y=x-10啊?按+10算了.设直线y=x+t是抛物线的切线,最小距离是两直线之间的距离,代入化简得x^2+(2t-4)x+t^2=0由判别式等于0得t=1代入方程得x=1所以距离的最
点M到焦点的距离为6则M到准线的距离也是6准线是x=4-6=-2=-p/2p=4抛物线方程是y^2=8xx=4时y=±4√2所以m=±4√2
能,y1=c,y2=6+c,y3=16+c,soy3>y2>y1其实y=2x^-4x+c=2(x-1)^+c-2对称轴为x=1,soy4
M(3,a)在抛物线y^2=4x代入方程:a^2=12y^2=4x的抛物线的焦点坐标是:(1,0)所以M点到抛物线焦点的距离是=√(3-1)^2+a^2=√4+12=√16=4
点P到抛物线焦点距离等于点P到抛物线准线距离,如图PF+PQ=PS+PQ,故最小值在S,P,Q三点共线时取得,此时P,Q的纵坐标都是-1,故选A.