已知抛物线y2=4x椭圆x2 9 y2 m=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 08:01:38
已知抛物线y2=4x椭圆x2 9 y2 m=1
已知椭圆x2+y2=4,抛物线y2=8x,过圆上一点(x0,y0)做切线交抛物线于A,B两点,且∠AOB=90度,求x0

高中补习班,抛物线切线方程两直线的交点在圆上.OK再问:麻烦说仔细点,加上步骤,谢谢!再答:抛物线方程为y²=8xp=4(a,b)在x^2=2py上,2pb=a^2设切线方程为:y=k(x-

已知A.B是抛物线y2=4x上的两点,P(1,2).

我们之间拥有的这个惟一的世界里哈哈.我看见目光在男人们和女人们中间交换,嘴唇到躯体,而当我们分开,我想我被空中的一片高声恸哭

已知椭圆C1:x2/a2+y2/b2=1(a>b>0)的右焦点与抛物线C2:y2=4x的焦点F重合

已知椭圆C1:x2/a2+y2/b2=1(a>b>0)的右焦点与抛物线C2:y2=4x的焦点F重合,抛物线焦点为(1,0),故椭圆两焦点为(-1,0)(1,0)把抛物线方程y^2=4x代入椭圆方程得:

已知椭圆x2/a2+y2/b2的一个焦点F与抛物线y2=4x的焦点重合,且抛物线的准线被椭圆截得弦长

(1)依题意得抛物线焦点准线x=-1,准线交椭圆于(-1,正负根号2/2);所以椭圆c=1,b2=a2-c2=a2-1;椭圆方程转化为x2/a2+y2/(a2-1)=1,将(-1,根号2/2)代入得a

已知抛物线Y2=4x,椭圆经过点(0,根号三),它们在x轴上有共同焦点,椭圆的对称轴为坐标轴,若P是椭圆上的点,设T的坐

抛物线Y^2=4x的焦点是(1,0)故椭圆中,c=1设椭圆方程是:x^2/a^2+y^2/(a^2-1)=1椭圆经过点(0,√3),可得:a^2=4即椭圆方程是x^2/4+y^2/3=1P(x,y)|

椭圆x2/a2+y2/b2=1(a>b>0)的一个焦点F与抛物线y2=4x的焦点重合,且截抛物线的准线

(1)y²=4x=2*2x=2px,p=2抛物线焦点F(p/2,0),即(1,0);准线x=-p/2=-1F与抛物线y2=4x的焦点重合,c=1,a²=b²+c²

已知双曲线x29-y2m=1的一个焦点在圆x2+y2-4x-5=0上,则双曲线的渐近线方程为(  )

由题意,双曲线x29-y2m=1的右焦点为(9+m,0)在圆x2+y2-4x-5=0上,∴(9+m)2-4•9+m-5=0∴9+m=5∴m=16∴双曲线方程为x29−y216=1∴双曲线的渐近线方程为

椭圆x2/a2+y2/b2=1的一个焦点与抛物线y2=4根号3x的焦点f重合且椭圆短轴的两个端点与f构成三角形求 椭圆方

抛物线y²=4√3x的焦点为(√3,0)所以椭圆c=√3如果构成的是直角三角形那么椭圆中有b=c,因为有c=1/2×2b=b所以b=√3a²=b²+c²=6椭圆

设抛物线C1的方程为y2=2px,其中p>o:椭圆C2的方程为(x-2-p/2)的平方+4y2=4.

根据图形,有且只有两个交点,将c1和c2方程联立,消去y,可得到一个带参数p的关于x的一元二次方程,由关于p的判别式可得出方程有一正一负两个实数根,但由c1方程可知,x值只能为正,也就是说c1和c2的

过椭圆x29+y24=1上一点H作圆x2+y2=2的两条切线,点A,B为切点,过A,B的直线l与x轴,y轴分布交于点P,

∵点H在椭圆x29+y24=1上,∴H(3cosθ,2sinθ),∵过椭圆x29+y24=1上一点H(3cosθ,2sinθ)作圆x2+y2=2的两条切线,点A,B为切点,∴直线AB的方程为:(3co

椭圆x29+y24=1与圆(x-a)2+y2=9有公共点,则实数a的取值范围是(  )

∵椭圆x29+y24=1中,|x|≤3,|y|≤2,圆(x-a)2+y2=9的圆心坐标(a,0),半径r=3.∴若椭圆x29+y24=1与圆(x-a)2+y2=9有公共点,则实数a的取值范围|a|≤6

(2007•崇文区二模)已知抛物线C1:y2=4x的焦点与椭圆C2:x29+y2b=1的右焦点F2重合,F1是椭圆的左焦

(1)设重心G(x,y),C(x′,y′).则x=x′−4+03y=y′+0−33.整理得x′=3x+4y′=3y+3.(*)将(*)代入y2=4x中,得(y+1)2=43(x+43).所以,△ABC

已知p(3,2)平分抛物线y2=4x的一条弦求弦AB的长

设A(x1,y1),B(x2,y2)则y1^2=4x1y2^2=4x2相减,(y2+y1)(y2-y1)=4(x2-x1)4(y2-y1)=4(x2-x1)kAB=(y2-y1)/(x2-x1)=1A

已知点A(4,4),若抛物线y2=2px的焦点与椭圆x

椭圆x210+y26=1的右焦点为(2,0),则抛物线y2=2px的焦点(2,0),∴抛物线方程为y2=8x延长MN交抛物线y2=4x的准线x=-1于P,则|MN|=|MF|,∴要使|MA|+|MN|

椭圆方程中求最值已知椭圆X2/25+Y2/16=1求y/(x-4)的最值

令y=k(x-4)①,说明直线的点也符合椭圆的点,联立椭圆→(25k+16)x-200kx+400(k-1)=0已知直线恒过(4,0)画图可知道直线一定与椭圆交两点→△≥0→(200k)-4(25k+

已知抛物线y2=4x和椭圆x2/9+y2/b=1有公共焦点F2,如果P是两条曲线的交点,且F1为椭圆的另一个焦点,

易知b=8联立消x的y4+18y2-144=0解得y2=6或y2=-24(舍)y=-+√6面积1/2*√6*2=√6