已知抛物线y=-x² mx 3与x轴交于ab两点,与y轴交于c
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:35:12
由已知条件得f'(x)=3mx2+2nx,由f'(-1)=-3,∴3m-2n=-3.又f(-1)=2,∴-m+n=2,∴m=1,n=3∴f(x)=x3+3x2,∴f'(x)=3x2+6x.令f'(x)
当x=0时,y=-3所以他与y轴交点坐标是(0,-3)当y=0时4x^2-11x-3=0(4x+1)(x-3)=0x=-1/4x=3所以他与X轴交点坐标是(-1/4,0)和(3,0)
由题意,y2=-8x的准线方程为:x=2双曲线x28−y22=1的两条渐近线方程为:y=±12x由题意,三角形平面区域的边界为x=2,y=±12x z=2x-y即y=2x-z,则z=2x-y
∵抛物线y=12x2+bx经过点A(4,0),∴12×42+4b=0,∴b=-2,∴抛物线的解析式为:y=12x2-2x=12(x-2)2-2,∴抛物线的对称轴为x=2,∵点C(1,3),∴作点C关于
zheti这题三角形ABD不是等腰三角形,而是等边三角形,因为等腰不是条件,本来就等腰得,根据二次函数顶点公式得D坐标(1,-1/2+k);|k-1/2|/|x1-x2|=sin60度;(x1-x2)
已知抛物线y=-2(x-1)²+8求抛物线与y轴交点坐标抛物线与x轴的两个交点间的距离抛物线与y轴交点的横坐标为x=0,代入已知抛物线y=-2(x-1)²+8得Y=-2(0-1)&
f'(x)=3mx^2+2nx,在(1,f(1))处的切线处切线的斜率为f'(1)=3m+2n,切线与直线3x+y=0平行,则3m+2n=-3,所以m,n满足3m+2n=-3,但不能算出m,n具体值,
先求导等于3mx^2+2nx把1带入得3m+2n即是斜率3m+2n=-3再问:已知函数f(x)=mx3+nx2(m,n∈R)在x=2时有极值,其图像在(1,f(1))处的切线与直线3x+y=0平行.(
将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=
由抛物线C1可得出C1经过点(1,-4)(-1,0)(3,0)因为C1与C2关于x轴对称所以C2讲过点(1,4)(-1,0)(3,0)所以C2为y=-x²+2x+3因为直线y=x+b(b>0
C1:y=(2/3)x^2+(6/3)x+8=(2/3)*(x+1.5)^2+(19.5/3)C2:y=(2/3)*(x-1.5)+(19.5/3)=(2/3)x^2-(6/3)x+8
关于y轴对称时偶函数∴令y=y,x=-x∴y=2/3x2-16/3x+8
-y=x²-2x-4移项得y=-x²+2x+4关于x轴对称就是x相等.再问:如果关于y轴对称呢再答:y相等,x添个负号搞不清就取几个特殊值画函数图
由已知条件得f'(x)=3mx2+2nx,由f'(-1)=-3,∴3m-2n=-3.又f(-1)=2,∴-m+n=2,∴m=1,n=3∴f(x)=x3+3x2,∴f'(x)=3x2+6x.令f'(x)
求导函数y'=3mx^2+2nx,当x=-1时,其导数值是y'=-m-2n=-3(切线的斜率)且-2=-m+n得m=7/3,n=1/3
抛物线定点p(-5/2,m-25/4)a+b=-5ab=m(a-b)²=(a+b)²-4ab=25-4m>0m
与x轴交点,就是y=0,有1个交点就是b^2-4ac=0,两个交点b^2-4ac>0没有交点就是b^2-4ac0则这个抛物线的图象与x轴有两个交点.
控制开口大小不变,即二次项系数不变;对称轴关于y轴对称,所以将一次项系数符号变为负,顶点位置对称,所以最低点y轴坐标相同
1)y=3(x+2)^2=3x^2+12x+12.2)y=3(x-4+2)^2=3(x-2)^2.3)y=-3(x-2)^2.
(1)因为抛物线y=x的平方+bx+c与x轴只有一个交点为A(2,0)所以Δ=b^2-4ac=0且A为抛物线的顶点所以顶点横坐标是2所以得方程组:{b^2-4c=0{-b/2=2解得:b=-4,c=4