已知抛物线y=2(x-1)²的顶点为A

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 11:12:08
已知抛物线y=2(x-1)²的顶点为A
已知抛物线Y=X的平方+2X+m-1

(1)与x轴只有一个交点,则△=0即:4-4(m-1)=0-4(m-1)=-4m-1=1m=2(2)y=x²+2x+m-1与y=x+2m联列方程组,只有一个解;即:x²+2x+m-

已知抛物线y=-2(x-1)²+8 求 抛物线与y轴交点坐标 抛物线与x轴的两个交点间的距离

已知抛物线y=-2(x-1)²+8求抛物线与y轴交点坐标抛物线与x轴的两个交点间的距离抛物线与y轴交点的横坐标为x=0,代入已知抛物线y=-2(x-1)²+8得Y=-2(0-1)&

已知抛物线y=-x^2-4x+5 (1)求已知抛物线关于x轴对称的图象的函数关系式

y=-x^2-4x+5=-(x^2+4x+4)-1=-(x+2)^2-1因此关于x轴对称的图象的函数关系式y=(x+2)^2+1关于y轴对称的图像的函数关系式y=-(x-2)^2-1

已知抛物线Y=X2+(2K+1)X-K2+K 求证:此抛物线与X轴总有两个不同的交点 此抛物线上

令y=0根的判别式△=(2k+1)^2-4(k-k^2)=8k^2+1>0所以此抛物线与X轴总有两个不同的交点

1已知抛物线y=x^2+ax+a+2

第一个是与什么有交点?要是与X轴,就x^2+ax+a+2=0,求出x的2个值.两点距离最短,就只有1个交点,根据b^2-4ac=0,得出a^2-4(a+2)=0,得出a.2,根据y=x^2-(k+1)

已知抛物线y=-1/2x^2+bx-8的顶点在x轴上

解;你先配方:y=-1/2x^2+bx-8=-1/2(x^2-2bx+b^2)+b^2/2-8=-1/2(x-b)^2+b^2/2-8因为顶点(b,b^2/2-8)在X轴上,则:b^2/2-8=0b^

已知抛物线y=x²+2x+m-1,若抛物线与直线y=x+2m只有一个交点,求M的值

所谓只有一个交点,就是x²+2x+m-1=x+2m的方程式x只有一个解.x²+2x+m-1=x+2m则(x+1/2)²=m+5/4x+1/2=+/-(m+5/4)的开平方

已知P(4,-1),F为抛物线y^2=8x的焦点,M为抛物线上的点

过M作MN//x轴交准线x=-2于N则:MF=MN所以,MP+MF=MP+MN≥PN所以,P、M、N三点共线时,MP+MF值最小所以,M点纵坐标=P点纵坐标=-1M点横坐标=(-1)^2/8=1/8即

1.已知抛物线顶点坐标(-2,3),且x=-1时,y=7.求抛物线的解析式.

1、设y=a(x+2)²+3∵x=-1时y=7∴7=a(-1+2)²+3a=4∴y=4(x+2)²+3=4x²+16x+192、设y=-(x+1/2)²

已知抛物线y=x 2-2x+1(1)球抛物线的顶点坐标

将抛物线配方成:Y=(X-1)²当X=1时,函数值最小,为0因此顶点坐标为(1,0)

已知抛物线Y=X平方+2X+M-1.(1)若抛物线与直线Y=X+2M只有一个交点,求M的值.

把Y=X+2M带进Y=X平方+2X+M-1得X+2M=X平方+2X+M-1,整理得X平方+X-(M+1)=0因为只有一个交点,所以X平方+X-(M+1)=0的△=0即1+4(M+1)=4M+5=0所以

已知抛物线y=x2+2m-m2 即:y等于x的平方加2m减m的平方 1:抛物线过原点 2:抛物线

这应该是两个题1、已知抛物线y=x2+2m-m2即:y等于x的平方加2m减m的平方,抛物线过原点,求m的值抛物线过原点,有x=y=0所以0=0+2m-m²m(m-2)=0m=0或m=22、已

已知抛物线y=x^2-4x+m的顶点A在直线y=-4x+1上

y=x^2-4x+m=(x-2)^2-4+m顶点为(2,m-4)代入直线得:m-4=-4X2+1m=-3A(2,-7)2)x^2-4x-3=0得x1=2+√7,x2=2-√7B(2+√7,0),C(2

已知抛物线y=-2(x+1)2+8,

①∵令x=0,y=-2(0+1)2+8=6,∴抛物线与y轴的交点坐标为(0,6);②∵令y=0,则-2(x+1)2+8=0,解得x1=1,x2=-3,∴抛物线与x轴的交点坐标为:(1,0),(-3,0

已知抛物线y=-1/2x²+x+4

把-1/2提在前面当作a,然后一步步化成它需要的形式,楼上回答很清楚了.由于a小于0,开口向下,无最小值,只有最大值,当横坐标等于对称轴时极为最大值.又第一问中可看出对称轴为x=1可以自己做出一个大致

已知抛物线Y=1/2X,O为坐标原点;F为抛物线的焦点.求OF的值

Y=1/2X是一条直线.如果方程是Y^2=1/2X.那么F坐标(1/8,0)|OF|=1/8.

已知抛物线y=x^2-4x+h的顶点A在直线y=-4x-1上,求抛物线的表达式

由y=x^2-4x+h得y=(x-2)^2+h-4所以A(2,h-4)将A代入得h-4=-8-1h=-9+4h=-5所以:y=x^2-4x-5(望采纳)

已知抛物线y=x^2-4x+h的顶点A在直线y=2x-1,求抛物线的顶点坐标.

抛物线的顶点坐标A(X,Y)X=-b/2a=-(-4)/2=2A在y=2x-1上,y=2*2-1=3∴顶点坐标A(2,3)