已知抛物线y=2xx,l,y=kx 2交C与A,B
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:13:36
联立解方程组.把y=-2x+m-3带入C得:-2x+m-3=x²+mx+3x²+(m+2)x+6-m=0次方程有且只有一个解.Δ=(m+2)²-4×(6-m)=0解得:m
∵x>0∴y=xx2+x+1=1x+1+1x又∵x+1x≥2x•1x=2∴1y=x+1x+1≥ 3,当且仅当x=1时等号成立∴0<y≤13,即函数的值域为(0,13]故答案为:(0,13]
纯粹的体力活儿啊!首先,抛物线的方程可以写成(x2)^2=2p(y-b).且限制条件为p<1/2.由
令x=0得y=-2;令y=0得x=4;∴抛物线的焦点坐标为:(4,0),(0,-2)--------------------------------------------------(4分)当焦点为
将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=
解析,y²=ax,焦点坐标为(a/4,0)直线y=2(x-8),过焦点,故,a=32.【2】设B(x1,y1),C(x2,y2).另设y²=32x的焦点为O(8,0)焦点O又是△A
A(a,4a²)d=∣a-4a²-2∣/√2=[(2a-1/4)²+31/16]/√2a=1/8,4a²=1/16A(1/8,1/16)
如图 21题http://www.gaokao750.cn/Files/adminfiles/wanglei/Resource/%B8%DF%BF%BC%CA%D4%BE%ED%BF%E2/
解(1)分别设OA,OB的斜率为k1,A(x1,y1),B(x2,y2)∴k1=y1/xi,k2=y2/x2解y²=-xy=k(x+1)得k²x+(1+2k²)x+k&s
知抛物线C:y=ax2(a不等于0)的准线方程y=-1,(1)求抛物线C的方程;(2)设F是抛物线C的焦点,直线l:y=kx+b,(k不等于0)与抛物线C交于A,B两点,记直线AF.BF的斜率之和为m
l1是4x-3y+a=0则x=(3y-a)/4所以y²=4x=3y-ay²-3y+a=0y1+y2=3y1y2=ax=(3y-a)/4所以x1x2=(3y1-a)(3y2-a)/1
2/9再问:过程,谢谢再答:由题目得y/x=2/3xy/xx+yy-yy/xx-yy=y/x-(y/x)²=2/3-4/9=2/9
y=(x-a)^2-a^2+2a+b,最小值为X=A时,顶点为,x=a,y=-a^2+2a+b,带入y=-xx,得出,b=-2a,带回第一个方程,发现,Y=x^2-2ax,得出X=0或者2A,2A=3
哈哈,这种题估计只要大学读的非数学非物理专业的,哪怕高中数学再牛也答不出来了!
第一问你干脆设点P(x,y),根据:P到顶点的距离等于P到l的距离,列出式子即可得出已知准线,可知道准线横坐标,假设存在点M(-p/2,a),那么你可列出直线方程,进行与抛物线联立,求出x1+x2,x
1,抛物线y^2=4x的焦点是(1,0),L的方程是y=x-1.2,设A(x1,y1)、B(x2,y2).联立直线与抛物线方程消去y得:x^2-6x+1=0.x1+x2=6,x1x2=1.[AB]=√
给点时间,好吗?再答:你在草稿纸上,画下大致图像,要求最大面积,只需在曲线上找出距直线AB最远的点设与直线AB平行的直线方程为y=2x+b,联立y^2=4x,得4x^2+(4b-4)x+b^2=0当方
(1)、∵抛物线方程为:y²=4x∴焦点坐标为(1,0)又∵直线l的斜率为1,且过抛物线的焦点∴直线方程为:y-0=x-1即x-y-1=0(2)、直线l与抛物线交于A、B两点∴将直线方程和抛
y=ax^2,x^2=2*(1/2a)*y,即p=1/2a所以F(0,p/2)即F(0,1/4a),准线l:y=-p/2即y=-1/4a(1)直线L斜率不存在.易得只有一交点,不合题意(2)设直线L:
再答:再问:学霸啊!!