已知抛物线y=2x²,直线y

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:10:08
已知抛物线y=2x²,直线y
已知抛物线C1:y=ax^2+bx与抛物线C2:y^2=2px(p>0)关于直线x+y=1对称

抛物线C2:y^2=2px(p>0),此抛物线焦点坐标F2为:(p/2,0),抛物线C1:y=ax^2+bx,此抛物线焦点坐标F1为:[-b/2a,(4ac-b^2+1)/4a]∵抛物线C1:y=ax

已知P是抛物线y=2倍(x-2)的平方的对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x抛物线y=2倍(x-2

y=2(x-2)^2的对称轴为x=2当x=t在y=2(x-2)^2与y=x的右侧的交点右侧时应满足2(t-2)^2-t=t-2当x=t在y=2(x-2)^2与y=x的右侧的交点与y=2(x-2)^2的

已知直线l的解析式:y=-2x+m-3,抛物线C:y=x平方+mx+3,

联立解方程组.把y=-2x+m-3带入C得:-2x+m-3=x²+mx+3x²+(m+2)x+6-m=0次方程有且只有一个解.Δ=(m+2)²-4×(6-m)=0解得:m

已知直线y=-x+2与抛物线y=-x平方+4交于A.B两点

第二问:存在.将直线AB向右上方平移到与抛物线相切,切点M与AB的距离最大,此时三角形MAB面积最大.设切线的方程为y=-x+a,由于相切,它和y=-x平方+4组成的方程组只能有一组解,即方程-x+a

已知抛物线的焦点在直线l:x-2y-4=0上,求抛物线的标准方程.

令x=0得y=-2;令y=0得x=4;∴抛物线的焦点坐标为:(4,0),(0,-2)--------------------------------------------------(4分)当焦点为

已知直线y=x-2与抛物线y

将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=

在线等求大神已知抛物线y=ax^2+bx+c的对称轴是直线x=3,抛物线

再问:活捉学霸一只,一手好字各种羡慕0.0学霸跟我回家吧

直线y=1-x交抛物线

解题思路:本题考查直线与圆锥曲线的关系,解决的关键在于联立方程,利用韦达定理,与条件“向量OM+ON与弦MN交于点E,若E点的横坐标为3/2”结合来解决问题,属于难题.解题过程:同学你好,如对解答还有

已知抛物线y=x²+2x+m-1,若抛物线与直线y=x+2m只有一个交点,求M的值

所谓只有一个交点,就是x²+2x+m-1=x+2m的方程式x只有一个解.x²+2x+m-1=x+2m则(x+1/2)²=m+5/4x+1/2=+/-(m+5/4)的开平方

1.已知抛物线Y^2=-X与直线L:Y=K(X+1)相交于A,B两点,

解(1)分别设OA,OB的斜率为k1,A(x1,y1),B(x2,y2)∴k1=y1/xi,k2=y2/x2解y²=-xy=k(x+1)得k²x+(1+2k²)x+k&s

已知抛物线y=-x2+4x+q的顶点在直线y=1/2x+1

抛物线y=-x²+4x+q的顶点坐标为[-b/(2a),(4ac-b²)/(4a)],其中a=-1,b=4,c=q-b/(2a)=-4/(-2)=2(4ac-b²)/(4

已知抛物线y=1/4x~2和直线y=ax+1 1.求证:

(2)将直线方程与抛物线方程联立,消去y:x²-4ax-4=0根据韦达定理:x1+x2=4a,x1x2=-4根据中点坐标公式P点坐标为((x1+x2)/2,(y1+y2)/2)y1+y2=a

已知抛物线y=1/4x~2和直线y=ax+1无论a取何值,抛物线与直线必有两个不同交点.

直线y=ax+1恒过定点(0,1)该定点在抛物线内,所以不论a取何值(前提是a存在),都与抛物线有两交点.

已知抛物线C:y^2=4x,和直线l:4x-3y+6=0

l1是4x-3y+a=0则x=(3y-a)/4所以y²=4x=3y-ay²-3y+a=0y1+y2=3y1y2=ax=(3y-a)/4所以x1x2=(3y1-a)(3y2-a)/1

已知,抛物线y=x2和直线y=3x+m都过a(2,n),求抛物线与直线另一交点

将点A带入抛物线n=2^2=4所以A(2,4)再将A带入直线求出m=y-3x=4-6=-2所以直线y=3x-2联立抛物线和直线x^2=3x-2x^2-3x+2=0x1=1,x2=2所以另外一个交点等横

已知抛物线y=x^2-4x+m的顶点A在直线y=-4x+1上

y=x^2-4x+m=(x-2)^2-4+m顶点为(2,m-4)代入直线得:m-4=-4X2+1m=-3A(2,-7)2)x^2-4x-3=0得x1=2+√7,x2=2-√7B(2+√7,0),C(2

已知抛物线y^2=-x与直线y=k(x+1)相交于AB两点,

证明:将抛物线和直线的方程联立:y^2=-x①y=k(x+1)②把②式代入①式化简:k^2*x^2+(2*k^2+1)*x+k^2=0根据韦达定理:xA*xB=1,代回抛物线方程yA*yB=-根号(-

已知抛物线y=2x平方和直线y=4x (1)求此抛物线与直线所围成图形的面积

(1)由y=2x²,y=4x消y得x=0或x=2故面积s=∫(0--2)4x-2x²dx=2x²-(2/3)x³|(0--2)=8/3(2)设直线方程为y=4x

已知曲边三角形由抛物线y^2=2x及直线x=0,y=1围成

(1)S=∫(0,1)y²/2dy=1/6*y³|(0,1)=1、6(2)π*1*1/2-π∫(0,1/2)2xdx=π/2-πx²|(0,1/2)=π/2-π/4=π/

已知抛物线y^2=-4x,直线y=2x+1,求直线被抛物线所截得弦长

y²=-4xy=2x+1(2x+1)²+4x=04x²+8x+1=0两根之和=-2两根之积=1/4两根之差=根号下(4-1)=根号下3y²+2(y-1)=0y&