已知抛物线y=x^2 bx c与x轴交于点AB两点,与y轴交于C.O是坐标原点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:20:36
已知抛物线y=x^2 bx c与x轴交于点AB两点,与y轴交于C.O是坐标原点
已知a,b为抛物线y=(x-c)(x-c-d)-2与x轴焦点的横坐标,a

若果是填空或选择题,建议用解析几何法,画图,如图:无论d>0或d<0,都有a<c<d,因而|a-c|+|c-b|=b-a;如果是解答题,则不建议采用解析几何法,可以解答如下:∵

已知P(x,y)是抛物线y2=-8x的准线与双曲线x

由题意,y2=-8x的准线方程为:x=2双曲线x28−y22=1的两条渐近线方程为:y=±12x由题意,三角形平面区域的边界为x=2,y=±12x z=2x-y即y=2x-z,则z=2x-y

已知抛物线y=-2(x-1)²+8 求 抛物线与y轴交点坐标 抛物线与x轴的两个交点间的距离

已知抛物线y=-2(x-1)²+8求抛物线与y轴交点坐标抛物线与x轴的两个交点间的距离抛物线与y轴交点的横坐标为x=0,代入已知抛物线y=-2(x-1)²+8得Y=-2(0-1)&

已知抛物线Y=X2+(2K+1)X-K2+K 求证:此抛物线与X轴总有两个不同的交点 此抛物线上

令y=0根的判别式△=(2k+1)^2-4(k-k^2)=8k^2+1>0所以此抛物线与X轴总有两个不同的交点

已知直线y=x-2与抛物线y

将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=

已知抛物线C1:y=x²-2x-3,抛物线C2与抛物线C1关于X轴对称,若

由抛物线C1可得出C1经过点(1,-4)(-1,0)(3,0)因为C1与C2关于x轴对称所以C2讲过点(1,4)(-1,0)(3,0)所以C2为y=-x²+2x+3因为直线y=x+b(b>0

已知抛物线y=x²+2x+m-1,若抛物线与直线y=x+2m只有一个交点,求M的值

所谓只有一个交点,就是x²+2x+m-1=x+2m的方程式x只有一个解.x²+2x+m-1=x+2m则(x+1/2)²=m+5/4x+1/2=+/-(m+5/4)的开平方

已知抛物线Y=X平方+2X+M-1.(1)若抛物线与直线Y=X+2M只有一个交点,求M的值.

把Y=X+2M带进Y=X平方+2X+M-1得X+2M=X平方+2X+M-1,整理得X平方+X-(M+1)=0因为只有一个交点,所以X平方+X-(M+1)=0的△=0即1+4(M+1)=4M+5=0所以

已知抛物线y=-x²+2x+2

∵y=-x²+2x+2=-(x-1)²+3∴抛物线的开口向下,对称轴是直线X=1在对称轴的右侧,Y随X的增大而减小.由x1>x2>1,可知点A,B都在对称轴的右侧,则y1

初三数学题 已知一条抛物线与抛物线y=x²-2x-4关于x轴对称 这条抛物线所表示函数的关系式为?

-y=x²-2x-4移项得y=-x²+2x+4关于x轴对称就是x相等.再问:如果关于y轴对称呢再答:y相等,x添个负号搞不清就取几个特殊值画函数图

已知抛物线+y=x²-2x-3

1、y=x²-2x-3 =(x-3)(x+1)当y=0时,x=3或x=-1当x=0时,y=-3所以a、b坐标为(-1,0)和(3,0)c坐标(0,-3)2、S△abc=(1/2)*

已知抛物线y=-x^2+mx-m+2.求证:这个抛物线的图象与x轴有两个交点.

与x轴交点,就是y=0,有1个交点就是b^2-4ac=0,两个交点b^2-4ac>0没有交点就是b^2-4ac0则这个抛物线的图象与x轴有两个交点.

已知抛物线y=-1/2x²+x+4

把-1/2提在前面当作a,然后一步步化成它需要的形式,楼上回答很清楚了.由于a小于0,开口向下,无最小值,只有最大值,当横坐标等于对称轴时极为最大值.又第一问中可看出对称轴为x=1可以自己做出一个大致

已知抛物线c1:y=2/3x+16/3x+8与抛物线c2关于y轴对称,求抛物线c2的解析式

控制开口大小不变,即二次项系数不变;对称轴关于y轴对称,所以将一次项系数符号变为负,顶点位置对称,所以最低点y轴坐标相同

已知抛物线y=x^2+bx+c与x轴只有一个交点

(1)因为抛物线y=x的平方+bx+c与x轴只有一个交点为A(2,0)所以Δ=b^2-4ac=0且A为抛物线的顶点所以顶点横坐标是2所以得方程组:{b^2-4c=0{-b/2=2解得:b=-4,c=4

已知抛物线y=1/2x²-x+k与x轴有两个不同的交点

AB=2√(1-2K)是因为如果把y=1/2x²-x+k看成一个二次方程1/2x²-x+k=0,那么AB两点就是方程的二根x1,x2,故AB=lx2-x1l=√(x1+x2)^2-