已知抛物线y=x的平方-3x-的顶点为D,并与x轴相交于A,B两点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:32:19
已知抛物线y=x的平方-3x-的顶点为D,并与x轴相交于A,B两点
提问已知抛物线y=x平方+2px+10的顶点再直线y=3x上,求此抛物线的解析式

y=x²+2px+10=x²+2px+p²-p²+10=(x+p)²-p²+10所以,此抛物线的顶点是(-p,-p²+10)由于顶

已知直线l的解析式:y=-2x+m-3,抛物线C:y=x平方+mx+3,

联立解方程组.把y=-2x+m-3带入C得:-2x+m-3=x²+mx+3x²+(m+2)x+6-m=0次方程有且只有一个解.Δ=(m+2)²-4×(6-m)=0解得:m

已知抛物线y=x平方-2x-3.则此图像关于x轴的抛物线是?关于y轴的抛物线是?关于原

做此题时首先要看下抛物线每个点的情况,就做出来了.点(x,y)关于x轴的对称点是(x,-y),所以可得关于Y轴的抛物线是-y=x^-2x-3y=-x^+2x+3点(x,y)关于y轴的对称点是(-x,y

已知抛物线Y=X的平方+2X+m-1

(1)与x轴只有一个交点,则△=0即:4-4(m-1)=0-4(m-1)=-4m-1=1m=2(2)y=x²+2x+m-1与y=x+2m联列方程组,只有一个解;即:x²+2x+m-

已知抛物线y=x的平方-3x+2k

答:y=x^2-3x+2k1)抛物线开口向上,与y轴恒有一个交点(0,2k)与坐标轴仅有一个公共点,则表示与x轴无交点所以:抛物线无零点坐标,方程x^2-3x+2k=0无解判别式=(-3)^2-4*1

已知抛物线y=x平方+mx+3的对称轴为x=2.求m的值

这道题里a=1(x前面没有数字),b=m\x0d所以-m/2=2(对称轴)-m=4m=-4追问:如果将此抛物线向右平移5个单位后,所得抛物线的解析式是多少.回答:此时对称轴x=2+5=7\x0d根据公

已知抛物线y=ax平方+bx+c的对称轴是直线x=-1,抛物线与x轴的2个交点间距离为3,抛物线的形状与y=x平方+5相

根据题意知道-b/2a=-1抛物线的形状与y=x平方+5相同知道a=1所以b=2抛物线与x轴的2个交点间距离为3知道y=x^2+2x+c=0的2解差为3,解解吧,很容易得到c=-5/4答案是y=x^2

已知抛物线y=x平方+bx+c过原点,抛物线与x轴两交点间的距离为3,求抛物线的解析式

它过原点,则有C=0,它与X轴有两个交点,其中一个就是原点,另一个是(-b,0)|b|=3b=3,b=-3y=x*x+3x,y=x*x-3x

已知抛物线y=四分之三(x-1)的平方-3 1.写出抛物线的开口方向,对称轴 2.设抛物线与y轴的

   y=3/4(x-1)^2-3因为二次线系数3/4>0所以开口向上,对称轴x=1令x=0有y=3/4-3=-9/4,所以p点坐标(0,-9/4)令y=0有3/4(x-

已知抛物线y=x的平方+mx+2m一m的平方

13、y=x^2+mx+2m-m^2=(x+m/2)^2-m^2/4+2m-m^2=(x+m/2)^2-5m^2/4+2m(1)过(0,0)0=0^2+m*0+2m-m^2m^2-2m=0m(m-2)

已知抛物线Y=负1/2X平方+(5-M)X+M-3的对称轴是Y轴求抛物线的顶点坐标

y=-1/2x²+(5-m)x+m-3a=-1/2b=5-mc=m-3当x=-b/2a=-(5-m)/-1=5-my=4ac-b²/4a=4*(-1/2)*(m-3)-(5-m)&

已知抛物线y=x的平方+2mx+m的平方-1

有些问题啦A,B都在x轴的的正半轴,且点A在点B右边怎么会OA=OB?

求y=3x的平方抛物线顶点坐标!

0,0再问:为什么!?

已知抛物线y=x的平方+Kx+k+3,如果抛物线的顶点在X轴上,求抛物线的解析式

根据题意当y=0的时候与x轴有一个交点即x²+kx+k+3=0判别式=k²-4(k+3)=0k²-4k-12=0(k-6)(k+2)=0k=-2或k=6解析式y=x

已知函数Y=2X的图像和抛物线Y=AX的平方+3

12,由题意,A(1,2),B(0,3).所以s△AOB的底边OB=3,高为1.故s△AOB=1/2×3=3/2..13,由于(2,b)在y=2x上,所以b=4..把x=2,y=4代入y=ax

1.已知抛物线y=-2分之1x平方+(5-m)x+m-3的对称轴是y轴,求抛物线的顶点坐标

1用定点公式x=-2a/b,y=4ac-b平方/4a代入-2*(5-m)/(-1/2)是以Y轴对称,所以定点的X应该为0即-2*(5-m)/(-1/2)=0解除M的值求出二次函数,C=顶点的Y值2依旧

已知抛物线Y=-X2 (是X的平方)

方法一:假设(x,-x^2)是抛物线y=-x^2的点,所以点到直线4x+3y-8=0距离为:|4x-3x^2-8|/5=|3x^2-4x+8|/5=|3(x-2/3)^2+20/3|/5故最小值是:(