已知抛物线y=负x平方加(m-4)x 2m 4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 17:11:20
已知抛物线y=负x平方加(m-4)x 2m 4
已知抛物线y=(x-m)的平方+2的顶点在y=2x上,则m等于?

y=(x-m)^2+2的顶点坐标为(m,2)所以(m,2)在y=2x上即2=2m所以m=1

已知抛物线Y=X的平方+2X+m-1

(1)与x轴只有一个交点,则△=0即:4-4(m-1)=0-4(m-1)=-4m-1=1m=2(2)y=x²+2x+m-1与y=x+2m联列方程组,只有一个解;即:x²+2x+m-

已知抛物线Y=X的平方+2mx+m的平方-1/2m-3/2

y=x^2+2mx+m^2-(m/2)-(3/2)=(x+m)^2-(m/2)-(3/2)抛物线顶点C[-m,-(m/2)-(3/2)]y=(x/2)-(3/2)x=-my=-(m/2)-(3/2)当

已知抛物线y=x平方+mx+m的顶点在直线y=-x上,求m的值

说明:x平方记为x^2y=x平方+mx+m=(x+m/2)^2+m-m^2/4顶点坐标(-m/2,m+m^2/4)代入y=-xm+m^2/4=m/2解得m=0或m=-2

已知抛物线Y=负X的平方 4交X轴于A,B两点,顶点是C 已知抛物线Y=负X的平方 4交X轴于A,B两点,顶点是C

一、y=0时x1=-2x2=2所以AB两点坐标为(-2,0),(2,0)x=(x1+x2)/2=0时y最大,即C点坐标(0,4)所以三角形ABC面积为4*4/2=8二、面积是三角形ABC的一半,即以A

..抛物线Y=x平方加X+B平方,已知(a,负4分之1)(a,Y1)在这个抛物线上.求Y1的值?

把两点坐标代入y=x^2+x+b^2,得方程组a^2+a+b^2=-1/4a^2-a+b^2=m(a+1/2)^2=-b^2=>b=0,a=-1/2m=a^2-a+b^2=1/4+1/2+0=3/4m

已知抛物线y=x的平方+mx+2m一m的平方

13、y=x^2+mx+2m-m^2=(x+m/2)^2-m^2/4+2m-m^2=(x+m/2)^2-5m^2/4+2m(1)过(0,0)0=0^2+m*0+2m-m^2m^2-2m=0m(m-2)

已知抛物线y=x的平方-mx+2m-4.

答:y=x^2-mx+2m-4=(x-2)[x-(m-2)]与x轴有两个交点,x1=2,x2=m-2依据题意有:点B为(2,0),点A为(m-2,0)并且m-2

已知抛物线Y=负1/2X平方+(5-M)X+M-3的对称轴是Y轴求抛物线的顶点坐标

y=-1/2x²+(5-m)x+m-3a=-1/2b=5-mc=m-3当x=-b/2a=-(5-m)/-1=5-my=4ac-b²/4a=4*(-1/2)*(m-3)-(5-m)&

已知抛物线y=x的平方+2mx+m的平方-1

有些问题啦A,B都在x轴的的正半轴,且点A在点B右边怎么会OA=OB?

已知抛物线Y=X平方+2X+M-1.(1)若抛物线与直线Y=X+2M只有一个交点,求M的值.

把Y=X+2M带进Y=X平方+2X+M-1得X+2M=X平方+2X+M-1,整理得X平方+X-(M+1)=0因为只有一个交点,所以X平方+X-(M+1)=0的△=0即1+4(M+1)=4M+5=0所以

已知函数y =x负平方

解题思路:做出函数的图像,然后观察图像得出结论。做出函数的图像,然后观察图像得出结论。解题过程:

已知抛物线y=x2+2m-m2 即:y等于x的平方加2m减m的平方 1:抛物线过原点 2:抛物线

这应该是两个题1、已知抛物线y=x2+2m-m2即:y等于x的平方加2m减m的平方,抛物线过原点,求m的值抛物线过原点,有x=y=0所以0=0+2m-m²m(m-2)=0m=0或m=22、已

已知抛物线y=负的x的二次方减2x加a的平方减二分之一.确定此抛物线在第几象限?求此抛物线的对称轴 顶点坐

你说的抛物线是否:Y=-X2-2X+a2-1/2?如果是,先求得b2-4ac=4a2+2>0.所以可知抛物线与X轴有两交点,则可知其所经过的象限了.对称轴是X=-1,顶点坐标是(-1,a2+1/2)

1.已知抛物线y=-2分之1x平方+(5-m)x+m-3的对称轴是y轴,求抛物线的顶点坐标

1用定点公式x=-2a/b,y=4ac-b平方/4a代入-2*(5-m)/(-1/2)是以Y轴对称,所以定点的X应该为0即-2*(5-m)/(-1/2)=0解除M的值求出二次函数,C=顶点的Y值2依旧

已知抛物线y=-x的平方+mx-m+2 已知抛物线y=-x平方+mx-m+2(1)若抛物线与x轴的2个交点分别在原点的两

由于AB=根号5,且A、B在原点的两侧,则将2分之根号5代入抛物线方程式,解得M=3(根号5-2)/2,不存在舍3的问题