已知抛物线顶点在原点,以x轴为对称轴且与圆x^2 y^2=4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:47:09
∵焦点在直线x-y=1上,且抛物线的顶点在原点,对称轴是x轴,令y=0得x=1,焦点A的坐标为A(1,0),因抛物线以x轴对称式,设方程为y2=2px,则p2=1求得p=2,∴则此抛物线方程为y2=4
由题有P=4,所以抛物线方程为y^2=8x
设抛物线的为y^2=2ax(x∈R)∵OA向量⊥OB向量∴OB所在直线方程为y=-1/2xps:互相垂直的两条线它们的斜率之积为-1∵y^2=2ax,y=2x得A(a/2,a)∵y^2=2ax,y=-
y^2=4x,抛物线的焦点F(1,0)设圆心为(a,b),半径为r圆与x轴相切,那么r=|b|,圆与抛物线准线x=-1相切,则a+1=|b|又b^2=4a∴(a+1)^2=b^2=4a解得a=1,b=
设抛物线的方程为y^2=2px(p>0),则焦点为(p/2,0)依题意可设A(y1^2/2p,y1),B(y2^2/2p,y2),C(y3^2/2p,y3),由于B,C在直线4x+y-20=0上所以将
设抛物线S:y²=4aX与l连立得:4X²-(40+a)+100=0XB+XC=(40+a)/4YB+YC=20-4XB+20-4XC=-a重心过直线X-4Y+b=0把((XC+X
设A,B关于L的对称点为C,D直线方程为y=kx,抛物线方程为:y方=2px设点C的坐标为(m,n)D点坐标(i,q)AC的中点在直线L上,AC连线垂直于直线L所以有k(m-1)/2=n/2-1/k=
因为对称轴x,所以设抛物线为y^2=2px(p>0),(y^2=-2px,p>0)交点坐标为F(p/2,0),把这个代入双曲线方程,求出p=4.(负的舍掉)所以方程为y^2=8x,or,y^2=-8x
是不是到焦点?(x0,-8),纵坐标-80抛物线定义到焦点距离等于到准线距离准线y=p/2所以p/2-(-8)=17p/2=9所以x²=-36x
∵顶点在原点对称轴为x轴∴设x=ay²∵过A∴2=9a∴a=2/9∴抛物线:x=2/9×y²
根据题意,抛物线可表达为y²=2px,p>0F(p/2,0),准线x=-p/2设A(a²/(2p),a),B(b²/(2p),b),C(c²/(2p),c)按抛
由题设知,抛物线以双曲线的右焦点为焦点,准线过双曲线的左焦点,∴p=2c.设抛物线方程为y2=4c•x,∵抛物线过点(32,-6),∴6=4c•32.∴c=1,故抛物线方程为y2=4x.又双曲线x2a
直线3x-4y-12=0当y=0时x=4直线与x轴交点为(4,0)由已知抛物线的顶点在原点,对称轴为X轴,焦点为(4,0)即P/2=4,P=8所以抛物线方程为y2=16x抛物线通就是过抛物线焦点且垂直
由题设,可设抛物线方程为:y²=2px,(p<0)结合题设及抛物线定义可得:2+|p/2|=6且m²=-4p(p<0)解得:p=-8.m=±4√2抛物线方程:y²=-16
顶点在原点,焦点在x轴上的抛物线设为y^2=2px过点(1,2),那么有4=2p*1,p=2即抛物线方程是y^2=4x
抛物线y^2=-8x准线x=2或x^2=8/3*y准线y=-2/3
设焦点坐标为(m,0),则4m+11=0m=-11/4,所以抛物线开口朝左,标准方程为y^2=-11x
解方程组y²=2pxy=x得y^2=2pyy=0y=p所以交点为(0,0)和(p,p)因为P(2,2)为AB的中点所以(0+p)/2=2p=4
准线与x=2距离为3有两支,很明显,其一为x=-1,其二为x=5,设抛物线方程为:y^2=2px,-p/2=-1,p=2,方程为y^2=2*2x,y^2=4x,-p/2=5,p=-10,方程为y^2=
1.抛物线上有一点P(4,m),4>0,顶点在原点,焦点在x轴上,y²=2pxP(4,m)到焦点的距离为7=p/2p=14y²=28x2.(kx-2)y²-28x=0k&