已知数列1,1,2,...的各项依次由一个等比数列的项

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 19:55:06
已知数列1,1,2,...的各项依次由一个等比数列的项
数列问题:已知数列{an}的通项公式是an=3n+2^n-1求数列{an}的前项和Sn

Sn=a1+a2+……+an=(3*1+2^1-1)+(3*2+2^2-1)+……+(3*n+2^n-1)=(3*1+3*2+……+3*n)+(2^1+……2^n)-n=3n(n+1)/2+2(1-2

已知数列中a1=1,a(n+1)/a(n)=1/2,求数列的通项公式

a(n+1)/a(n)=1/2q=1/2an=1*(1/2)^(n-1)=(1/2)^(n-1)再问:我是初学者,能仔细点吗再答:公比

已知数列{an}的前项和为Sn,数列{根号Sn+1}是公比为2的等比数列 0分

当n=1时,b1=5+a1;当n≥2时,bn=5^n-(-1)^n×3(a1+1)×4^﹙n-2﹚(a1>-1).①当n为偶数时,5^n-3(a1+1)×4^(n-2)<5^n+1+3(a1+1)×4

数列:已知数列{an}前 n项和为Sn,且a1=2,4Sn=ana(n+1).求数列{an}的通项公式.

先列式4*(S1)=(a1)*(a2).14*(S2)=(a2)*(a3).2...4*(Sn)=(an)*(a(n+1)).n2式-1式,3式-2式,.可以得出a3-a1=4a4-a2=4...an

已知数列{log2^(an+1)}(n∈N)为等差数列,且a1=1,a3=7.求(1)求数列{an}的通项公式(2)数列

(1)设bn=log2(an+1),则{bn}为等差数列,又a1=1,a3=7,所以b1=log2(1+1)=1,b2=log(7+1)=3,所以公差d=1.所以bn=b1+(n-1)d=1+(n-1

已知数列前n项和Sn=1/2-2∧n+1.求这个数列的通项公式.这个数列是等差数列还是等比数列?

你的那个公式,看的不是很明白,你重新写,你写的是二分之一减去2的N次方加1么?1/2-2^n+1前N项的和,那么,你可以知道a0,因为S0=a0.所以,a0=1/2-1+1=1/2然后就是求An了,A

求数列通项公式现有已知无穷数列An,1,1,2,3,5,8,13,21.求该数列的通项公式要过程

特征方程为:  X^2=X+1  解得  X1=(1+√5)/2,X2=(1-√5)/2.  则a(n)=C1*X1^n+C2*X2^n.  ∵a(1)=a(2)=1.  ∴C1*X1+C2*X2=1

已知数列an的前n项和为Sn,数列根号Sn+1是公比为2的等比数列

证:(1)根号Sn+1=(a1+1)*2^(n-1)=4*2^(n-1)=2^(n+1)Sn+1=2^(2n+2)=4^(n+1).1Sn=4^n.21式-2式Sn+1-Sn=4^(n+1)-4^na

已知数列an,a1=3,sn=2a(n+1)+1,求数列an的通项公式

n≥2时,a[n]=S[n]-S[n-1]=2a[n+1]+1-2a[n]-1∴3a[n]=2a[n+1]即:a[n+1]/a[n]=3/2∴当n≥2时数列{a[n]}是公比为3/2的等比数列∵a[1

已知数列{an},an=2n+1,数列{bn},bn=1/2^n.求数列{an/bn}的前n项和

  这类问题你只要把握一个规律:an是等差数列,bn是等比数列,那么an*bn或an/bn的前n项和的求法就是乘以公比(这道题目是2),然后就会出来另一个等比数列的求和.反正就是这

已知n∈N,数列dn满足dn=[3+(-1)的n次方]/2,数列an满足an=d1+d2+d3+...d2n,数列bn为

(1)dn满足dn=[3+(-1)的n次方]/2易知,dn=1n是奇数dn=2n是偶数又由an=d1+d2+d3+...d2n,得d1+d2=d3+d4=.,所以通项公式an=3n且b2,b4为方程x

数列与不等式的题目已知数列Xn满足 Xn=-(1/2)Xn-1^2 +Xn-1 +1,1

x(n)=(-1/2)(x(n-1)-1)^2+3/2,x(n)-1=(-1/2)(x(n-1)-1)^2+1/2,因为(根2)-1=(-1/2)((根2)-1)^2+1/2,上面的两式相减,消去1/

已知数列{an},如果数列{bn}满足b1=a1,bn=an+a(n-1)则称数列{bn}是数列{an}的生成数列

d(n)=2^n+n,p(1)=d(1)=2^1+1=3,p(n+1)=d(n+1)+d(n)=2^(n+1)+(n+1)+2^n+n=3*2^n+2n+1,L(2n-1)=d(2n-1)=2^(2n

已知数列{an},a1=1,an+1=3an/2an+3,(1)求数列{an}的前五项)(2)数列{an}的通项公式

(1)a(n+1)=3an/(2an+3)a1=1a2=3a1/(2a1+3)=3/5a3=3a2/(2a2+3)=3/7a4=3a3/(2a3+3)=3/9=1/3a5=3a4/(2a4+3)=3/

已知数列an的通项an.判断数列的增减性 an=2的n-1次方

递增再问:详细一点,,谢谢。再答:再问:好高端。。。。

数列练习题已知数列{an}是等比数列,其中a7=1,且a4,a5+1,a6成等差数列,(1)求数列{an}的通向公式(2

a7=aq^6=1aq^4=1/q^2aq^3=1/q^3aq^5=1/qa4,a5+1,a6成等差数列2(a*q^4+1)=a*q^3+a*q^52a*q^4+2=a*q^3+a*q^52/q^2+

已知数列{an}前项的和为2的n次方减1,求数列{an}的通项公式

Sn=2^n-1Sn-1=2^(n-1)-1用上式减去下式an=2^(n-1)