已知数列1,x1,x2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 19:59:37
{1/xn}是调和数列,1/(1/x(n+1))-1/(1/xn)=dx(n+1)-xn=d,为定值,即数列{xn}为等差数列,设公差为dx1+x2+...+x9=9x1+36d=9(x1+4d)=9
解答如下:证法一:均值不等式.X1^2/(X1+X2)+(X1+X2)/4≥2根号[X1^2/(X1+X2)×(X1+X2)/4]=X1X2^2/(X2+X3)+(X2+X3)/4≥2根号[X2^2/
x1x2..xn均为整数应是x1x2..xn均为正数吧,由均值不等式得:(x2/√x1)+√x1≥2√x2,(x3/√x2)+√x2≥2√x3,...(x1/√xn)+√xn≥2√x1,把上面n个不等
已知X1、X2(X1〈X2)是二次方程X^2-(m-1)X+n=0③的两个实数根,Y1、Y2是方程Y^2-(n+1)Y-6m=0⑤的两个实数根所以X1+X2=m-1,X1*X2=n,Δ=(m-1)^2
取对数log2(xn+2)=2/3log2(xn+1)+1/3log2(xn)设bn=log2(xn)b1=0b2=4bn+2=2/3bn+1+1/3bnbn+2-bn+1=(-1/3)(bn+1-b
这题是几校联考(我记得好像有杨思的)的题吧,“调和数列”指满足1/a(n+1)-1/an=d(n∈N*,d为常数)的数列,所以数列{1/xn}代表数列{xn}是等差数列,由x1+x2+x3+.+xn=
证明:x1,x2,...xn>0,使用均值不等式,(x1)^2/x2+x2≥2x1,(x2)^2/x3+x3≥2x2,...(xn)^2/x1+x1≥2x1,上述所有式子相加再两边除以2,得到(x1)
第二问后面5x是x1还是x2再问:我再写一遍吧(1)求x1/x2+x2/x1;(2)求x1^2+5X2,是x2再答:
方程3x²-4x=-1可化为:3x²-4x+1=0由根与系数的关系,有x1+x2=4/3,x1x2=1/3∴x2/x1+x1/x2=(x1²+x2²)/(x1x
设:limXn=An→∞根据,limXn=lim{1+1/[1+X(n-1)]}n→∞n→∞得到:A=1+1/(1+A)即:A(1+A)=1+A+1A²=2所以,A=根号2.
不等式左边=[2^x1+2^x2]/2>2根号(2^x1*2^x2)/2=根号2^(x1+x2){因为x1不等于x2,所以等号取不到}不等式右边=2^[(x1+x2)/2]=根号2^(x1+x2)得证
xn的极限为a则对于任意e大于0,存在N1,当n>N1时,都有lx-al
∵xn+1=xn-xn-1∴xn+2=xn+1-xn,两式相加整理得xn+2=-xn-1,∴xn+5=-xn+2,∴xn-1=xn+5,∴数列{xn}是以6为周期的数列,x1=a,x2=b,x3=b-
Xn/(x1+x2+...Xn-1)(X1+X2...+Xn)=1/(x1+x2+...+xn-1)-1/(x1+x2+...+xn-1+xn)所以原式=1/x1-1/(x1+x2)+1/(x1+x2
以下用^b表示b次方.x(n)=(x(n-1)+x(n-2))/2,两边减x(n-1)得x(n)-x(n-1)=(x(n-1)-x(n-2))*(-1/2)所以{x(n)-x(n-1)}是以x(2)-
已知X1X2为方程5X平方-3X-1=0两个根;所以x1+x2=3/5;x1x2=-1/5;x1-x2=√(x1-x2)²=√[(x1+x2)²-4x1x2]=√(9/25+4/5
令y1=e^x1,y2=e^x2=>y1>y2(e^X1)+(1/e^X1)-(e^x2)-(1/e^x2)=y1+1/y1-y2-1/y2=(y1-y2)-(y1-y2)/y1y2=(y1-y2)(
X1X2=1X1+X2=3x1^2-4x1-x2=x1^2-4x1-(3-x1)=x1^2-3x1-3∵x1,x2是方程x^2-3x+1=0的解∴x1^2-3x1+1-4=-4
x1³+x2³=(x1+x2)(x1²-x1*x2+x2²)=(x1+x2)[(x1+x2)²-3x1*x2]=3×(3²-3×1)=3×6