已知数列an中an=2n-19 求数列绝对值an的前
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:13:53
a(n+1)=2an/(an+1)∴1/a(n+1)=(an+1)/2an=1/2an+1/2∴1/a(n+1)-1=1/2an+1/2-1=1/2an-1/2=(1/2)(1/an-1),1/a1-
先求倒数1/a(n+1)=(an+2)/(2an)1/a(n+1)=1/2+(1/an)所以1/an是一个等差数列,公差d为1/2所以1/an=1/a1+(n-1)*d=1/a1+(n-1)/2
a(n+1)=an+lg[n/(n+1)]即a(n+1)-an=lgn-lg(n+1)将n=1,2,3,...代入,得a2-a1=lg1-lg2a3-a2=lg2-lg3.an-a(n-1)=lg(n
因为an-2/an=2n所以:(an)^2-2nan-2=0根据万能公式:an=n-√(n^2+2),an=n+√(n^2+2)>0又因an<0所以:an=n-√(n^2+2),假设m>n>0那么am
a(n+1)-an=2n所以a2-a1=2a3-a2=4a4-a3=6……an-a(n-1)=2(n-1)相加得an-a1=2+4+6+……+2(n-1)=n(n-1)所以当n>1时,an=n(n-1
a(n+1)=an^2+2ana(n+1)+1=(an+1)^2log2[(a(n+1)+1]=2log2[(an)+1]log2[(a(n+1)+1]/log2[an+1]=2{log2[a(n+1
∵数列{an}中,an=2n−1(n为正奇数)2n−1(n为正偶数),∴a9=29-1=28=256.S9=21-1+(2×2-1)+23-1+(2×4-1)+25-1+(2×6-1)+27-1+(2
an=Sn-Sn-1=4n+1(n>=2),a1=2*1+3=5,满足上式,an通项就是4n+1,即证实等差数列
an-3^(n+1)=2a(n-1)+3^n-3^(n+1)3^n-3^(n+1)=3^n-3*3^n=-2*3^n所以an-3^(n+1)=2a(n-1)-2*3^n=2[a(n-1)-3^n][a
∵an+1=an+2n-1,∴an-an-1=2n-2,∵a1=1,∴a2-1=1;a3-a2=2;a4-a3=22;…;an-an-1=2n-2,∴上面各式相加得,an-1=1+2+22+23+…+
n+1-bn=an+1-(n+1)^2+n+1-an+n^2-n等于一个常数,就可以证明是以神马为首项神马为公差的等比
A(n+2)=6*(n+1)*2^(n+1)-A(n+1)A(n+2)-A(n+1)=(6n+12)*2^n-A(n+1)+AnA(n+2)=(6n+12)*2^n+AnA3=37A2=11d=26A
由an+1=an+2n可以列出以下各式a10=a9+2x9a9=a8+2x8a8=a7+2x7..a3=a2+2x2a2=a1+2x1以上各式相加可得a10=a1+1x2+2x2+.+9x2a10=9
n=1时,a1=S1=k+2n≥2时,Sn=2n²+kS(n-1)=2(n-1)²+kan=Sn-S(n-1)=2n²+k-2(n-1)²-k=4n-2数列{a
an+1-an=2^nan-an-1=2^n-1a2-a1=2^1-1an-a1=2^1+2^2+2^3+...2^n-1an=2^n+1
(1)证明:∵在数列{a[n]}中,已知a[n]+a[n+1]=2n(n∈N*)∴用待定系数法,有:a[n+1]+x(n+1)+y=-(a[n]+xn+y)∵-2x=2,-x-2y=0∴x=-1,y=
应该是A(n+1)=An+2n吧~~~=>a(n+1)-an=2n所以an-a(n-1)=2(n-1)a(n-1)-a(n-2)=2(n-2)...a2-a1=2*1把左边加起来,右边加起来得到an-
an=(n+1)(n+2)再问:有木有过程?再答:原式整理后得到an=(n+1)(an-1/n+1)试值:a2=(2+1)(6/2+1)=(2+1)(2x3/2+1)=12=3x4a3=(3+1)(1
A(n+1)=An+2(n+1)A(n+1)-An=2(n+1)即An-A(n-1)=2nA(n-1)-A(n-2)=2(n-1).A3-A2=2*3A2-A1=2*2以上各式相加得:An-A1=2*
sn/n=(2n-1)an(n>=1),sn=(2n^2-n)an,s(n+1)=(2n^2+3n+1)a(n+1),两者相减可得(2n+3)an+1=(2n-1)an,an=(2n-3)*a(n-1