已知数列an为等差数列,sn为前n项和,且S3=S6,S7=Sn,求n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 19:14:59
已知数列an为等差数列,sn为前n项和,且S3=S6,S7=Sn,求n
已知数列an是等差数列,且a1不等于0,Sn为这个数列的前n项和,求limnan/Sn.limSn+Sn-1/Sn+Sn

1、Sn=(a1+an)n/2所以nan/Sn=2an/(a1+an)=2[a1+(n-1)d]/[2a1+(n-1)d]上下除以(n-1)=2[a1/(n-1)+d]/[2a1/(n-1)+d]n-

已知数列an是等差数列,且a1≠0,Sn为这个数列的前n项和.求1、lim nan/Sn 2、lim (Sn+Sn+1)

1、Sn=(a1+an)n/2所以nan/Sn=2an/(a1+an)=2[a1+(n-1)d]/[2a1+(n-1)d]上下除以(n-1)=2[a1/(n-1)+d]/[2a1/(n-1)+d]n-

已知数列an的前n项和为Sn,首项伟a1,且1,an,Sn成等差数列,求数列an的通项公式

1+Sn=2anSn=2an-1n>=2则S(n-1)=2a(n-1)-1相减an=2an-2a(n-1)an=2a(n-1)所以n>=2时是等比q=2a1=S1所以1+a1=2a1a1=1所以an=

已知数列{an}的前n项和为Sn=n^2-3n,求证:数列{an}是等差数列

因为Sn-Sn-1=n^2-3n-{(n-1)^2-3(n-1)}=2n-4.又由an=Sn-Sn-1,所以an=2n-4,最后还要验证一下,当n=1时,S1=a1,符合题意.d=an-an-1=2易

已知数列{an}的前几项的和为sn ,且a1=0.5,an=-2SnSn-1证明数列{1/Sn}为等差数列

∵Sn-Sn-1=-anSn-Sn-1=-an/2∴d=1/Sn-1/Sn-1=(Sn-Sn-1)/SnSn-1=21/S1=1/a1=2∴{1/Sn}为首项=2,公差=2的等差数列

已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列

an+2Sn*Sn-1=0其中an=Sn-Sn-1代入上式:Sn-Sn-1+2Sn*Sn-1=0a1=1/2,故Sn和Sn-1≠0,上式两边同除以Sn*Sn-1得:1/Sn-1-1/Sn+2=0即:1

已知数列an的前n项和为Sn,a1=1,数列{an+Sn}是公差为2的等差数列

a1=1,a2=3/2,a3=7/4an=2-(1/2)^(n-1)Tn=n/(2^(n-1))+(1/2)^(n-2)+n^2+n-4

已知数列{an}的前n项和为Sn,且满足Sn=Sn-1/2Sn-1 +1,a1=2,求证{1/Sn}是等差数列

由Sn=Sn-1/2Sn-1+1,两边同时取倒数可得1/Sn=(2Sn-1+1)/Sn-11/Sn=2+1/Sn-1即1/Sn-1/Sn-1=2故{1/Sn}是首项为1/2,公差为2的等差数列1/Sn

已知数列前n项和为Sn,首项为a1,且1,an,Sn为等差数列 (1)求数列{an}的通项公式

∵1,an,Sn为等差数列∴2a1=1+S1=1+a12a2=1+S2=1+a1+a2∴a1=1a2=2由2an=1+Sn2a(n-1)=1+S(n-1)得2an-2a(n-1)=Sn-S(n-1)=

已知数列{An}的各项均为正数,前n项和为Sn,且满足2Sn=An²+n-4 1.求证{An}为等差数列

1.n=1时,2a1=2S1=a1²+1-4a1²-2a1-3=0(a1+1)(a1-3)=0a1=-1(数列各项均为正,舍去)或a1=3n≥2时,2an=2Sn-2S(n-1)=

已知数列an是等差数列,其前n项和为Sn,a3=6,

a3=a1+2d=6S3=a1+a2+a3=3a1+3d=12解得a1=2,d=2,故an=2n所以Sn=n(n+1)所以1/S1+1/S2+……+1/Sn=1/(1*2)+1/(2*3)+1/(3*

已知公差不为0的等差数列{An}的首项A1=1,前n项和为Sn,若数列{Sn/An}是等差数列,求An?

S1/a1=1S2/a2-S1/a1=(2+d)/(1+d)-1=d/(1+d)S3/a3-S1/a1==(3+3d)/(1+2d)-1=(2+d)/(1+2d)2*d/(1+d)=(2+d)/(1+

已知数列{an}中,a2=2,前n项和为Sn,且Sn=n(an+1)/2证明数列{an+1-an}是等差数列

Sn=n(an+1)/2S(n+1)=(n+1)[a(n+1)+1]/2用下式减上式a(n+1)=[(n+1)a(n+1)-nan+1]/2即2a(n+1)=[(n+1)a(n+1)-nan+1]即(

已知数列{an}中的前几项和为Sn且满足a1=0.5,an=-2Sn*S(n-1).证明数列{1/Sn}为等差数列,求S

当n≥2时,可以化为Sn-S(n-1)=-2Sn×S(n-1),两边同除以Sn×S(n-1),得1/Sn-1/S(n-1)=2所以{1/Sn}是以2为首项,2为公差的等差数列即1/Sn=2nSn=1/

已知数列{An}的前n项和Sn=3n²-2n,证明数列{An}为等差数列

当n=1时,a1=S1=1当n≥2时,an=Sn-S(n-1)=3n²-2n-3(n-1)²+2(n-1)=6n-5∵当n=1时,满足an=6n-5又∵an-a(n-1)=6n-5

已知数列{an}的前n项和为Sn,a1=1.数列{an+Sn}是公差为2的等差数列

数列{an+Sn}是公差为2的等差数列∴an+Sn=a1+s1+2(n-1)=1+1+2n-2=2n∵当n=2时,a2+a2+a1=4∴a2=3/2(2)当n>=2时由an+Sn=2n得a(n-1)+

已知各项均为正数的数列{an}的前n项和为sn,且sn,an,1成等差数列,求数列{an}的通项公式

Sn、an、1成等差,则2an=Sn+1(n=1时,得a1=1),当n≥2时,有2a(n-1)=S(n-1)+1,则2an-2a(n-1)=an,即an/[a(n-1)]=2=常数,所以{an}是等比

已知各项均为正数的数列{an}前n项和为Sn,首相为a1,且½,an,Sn是等差数列,求通项{an}公式

由题意知2an=Sn+1/2,an>0,当n=1时,2a1=a1+1/2,解得a1=1/2,当n≥2时,Sn=2an-1/2,S(n-1)=2a(n-1)-1/2,两式相减得an=Sn-S(n-1)=