已知数列an为等比数列其前n项和为sn,数列bn是公比大于零

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:20:20
已知数列an为等比数列其前n项和为sn,数列bn是公比大于零
已知等比数列{an},首项为81,数列{bn}满足bn=㏒3an,其前n项和为Sn,求证﹛bn﹜为等差数列.

缺少条件,{an}为正项数列,否则log3(an)无意义,题目没法解.证:数列为正项数列,公比q>0a(n+1)/an=qb(n+1)-bn=log3[a(n+1)]-log3(an)=log3[a(

已知等比数列{an},首项为81,数列{bn}满足bn=log3为底an,其前n项和Sn

(1)等比数列{an},首项为81设an=a1*q^(n-1)=81*q^(n-1)数列{bn}满足bn=log3为底an∴bn=log3为底[81*q^(n-1)]=log3为底81+log3为底q

已知数列{an}是公差不为零的等差数列,其前n项和为Sn,且S5=30,又a1,a3,a9成等比数列.

(Ⅰ)设公差为d,由条件得5a1+5×42d=30(a1+2d)2=a1(a1+8d),得a1=d=2.∴an=2n,Sn=2n+n(n-1)×22=n2+n;(Ⅱ)∵1Sn+an+2=1n2+n+2

已知等比数列an,首项为81,数列bn满足bn=log3an,其前n项和sn

1设an工笔qbn-bn-1=log3an-log3an-1=log3(an/an-1)=log3q=d所以bn为等差数列2b1=log3a1=4由题意可知d

已知等比数列{An}.首项为81.数列{Bn}=log3an[三在下,an在上],其前n项和Sn

证明:B1=log3an=4≠0当n>=1的时,设等比数列An的公比为q,则Bn+1-Bn=log3a(n+1)-log3an=log3(a(n+1)/an)=log3q∵公比q为常数,∴log3q也

已知数列an 前n项和Sn=n(2n-1) 证明 (an)为等比数列

sn=n(2n-1)sn-1=(n-1)(2n-3)an=4n-3其实是一个等差数列再问:不懂。。。再答:对于一个数列,前N项满足该通式,则前N-1项也满足该式子做差即可,是高中常用的数列解决方法

已知数列an 前n项和Sn=2的n次方-1 证明 (an)为等比数列

利用当n大于等于2时an=sn-s(n-1)=2的n次方-1-(2的n-1次方-1)=2的n-1次方.然后后一项比前一项=2,所以an为等比数列

已知数列{An}是首项为a且公比q不等于1得等比数列,Sn是其前n项和,A1,2A7,3A4成等差数列.

An=A1*q^(n-1),2*2A7=A1+3A4得4A1*q^6=A1+3A1*q^3,所以4q^6=1+3q^3,设q^3=t,则4t^2-3t-1=0,得t=-1/4或1(舍弃),即q^3=-

已知数列an的前n项和为Sn,数列根号Sn+1是公比为2的等比数列

证:(1)根号Sn+1=(a1+1)*2^(n-1)=4*2^(n-1)=2^(n+1)Sn+1=2^(2n+2)=4^(n+1).1Sn=4^n.21式-2式Sn+1-Sn=4^(n+1)-4^na

已知等比数列an的公比q为实数 1.其前n项和为Sn且a3=4 S6=9S3 求数列an通项公式 2.求数列n倍an的前

S6=9S3,得到q=2.a3=4,得到a0=1∴an=2^(n-1)Tn=∑[1≤k≤n]k2^(k-1).看Tx=∑[1≤k≤n]kx^(k-1).有∫[0,x]Ttdt=x+x²+x&

高三数学数列题已知{an}为等比数列,其前n项和的积为Tn,首项a1>1,a2006*a2007>1,(a2006-1)

(a2006-1)(a2007-1)1,soqa20070T(n)=中间项的n次方=>T(n)与1的关系,中间项和1的关系,是一致的a2007是第一项小于1的a2007是T(4013的中间项)----

已知数列AN是等比数列SN为其前N项和 1设S3=2/3S6=21/16求AN

你的数据是这样的吗?感觉数据不好算哦~……等比数列有一性质就是:如果Sn是等比数列(不为常数),则Sm、S2m-Sm,S3m-S2m……也构成等比数列.例如本题中,S3=a1+a1*q+a1*q^2S

已知数列an是首项为a 且公比q不等于一1的等比数列 sn是其前n项和 a1 2a7 3a4成等差数列

a1,a7,a4成等差数列2a7=a1+a42a1q^6=a1+a1q^32q^6=1+q^32q^6-q^3-1=(2q^3+1)(q^3-1)=0因为公比Q不等于1,所以,q^3=-1/2,2S3

已知等比数列{an},首项为81,数列{bn}=log3an,其前n项和为Sn、证明{bn}是等差数

证:设等比数列{an}公比为q,对于数列{bn},对数有意义,q>0an=a1×q^(n-1)n=1时,b1=log3(a1)=log3(81)=4n≥2时,bn=log3(an)=log3(a1×q

已知数列{An},Sn是其前n项和,且满足3An=2Sn+n,n为正整数,求证数列{An+1/2}为等比数列

1.证:Sn=(3an-n)/2Sn-1=[3a(n-1)-(n-1)]/2an=Sn-Sn-1=[3an-3a(n-1)-1]/2an=3a(n-1)+1an+1/2=3a(n-1)+3/2=3[a

已知数列an的前n项和为sn,且sn+an=n^2+3n+5/2,证明数列{an-n}是等比数列

Sn+an=n^2+3n+5/2①当n=1时,S1+a1=1^2+3*1+5/2=13/2而S1=a1,所以2a1=13/2,即a1=13/4,所以a1-1=9/4;又S(n-1)+a(n-1)=(n

已知数列an满足bn=an-3n,且bn为等比数列,求an前n项和Sn

n=b1.q^(n-1)bn=an-3nan=bn+3n=b1.q^(n-1)+3nSn=a1+a2+...+an=b1(q^n-1)/(q-1)+3n(n+1)/2

已知数列(an)的前n项和为Sn,满足an+Sn=2n,证明数列(an-2)为等比数列并求出an

an+Sn=2n令n=1a1+S1=2=>a1=1又a(n-1)+S(n-1)=2(n-1)与上式作差an-a(n-1)+an=22an-a(n-1)=2an-2=(1/2)[a(n-1)-2]得证a

已知数列an的前n项和公式为Sn=kq^n-k,求证数列an为等比数列

∵Sn=kq^n-k∴S(n+1)=kq^(n+1)-k∴a(n+1)=S(n+1)-Sn=[kq^(n+1)-k]-(kq^n-k)=k[q^(n+1)-q^n]=k[(q-1)q^na(n+1)/

数列{an}为等差数列,an为正整数,其前n项和为Sn,数列{bn}为等比数列,且a1=3,b1=1,数列{b

设等差数列{an}的公差为d,等比数列{bn}的公比为q,由题意d为正整数,又a1=3,b1=1,所以an=3+(n-1)d,bn=qn-1--------(6分)又因为数列{ban}是公比为64的等