已知数列an只有4项,且各项互不相同,各项都是集合1,2,3,4中的元素
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:56:17
(1)∵2Sn=an2+n-4(n∈N*).∴2Sn+1=an+12+n+1-4.两式相减得2Sn+1-2Sn=an+12+n+1-4-(an2+n-4),即2an+1=an+12-an2+1,则an
a(n+1)=(1/2)an(4-an)2a(n+1)=4an-an^2=-[an^2-2*2an+4]+4=-(an-2)^2+42[a(n+1)-2]=-(an-2)^2设bn=an-2,b0=a
an+1-2=-1/2(an_2)^2所以an-2=-1/2(an-1-2)^2=-1/2^(1+2)(an-2-2)^4=...=-1/2^(2^0+2^1+.2^(n-1))(a0-2)^(2^n
a1=2,a2=1,等比1/2,an=2×(1/2)^(n-1).a1=2a2=1,a1=1,a2=1/2,等比1/2,an=1×(1/2)^(n-1).
4Sn=(an+1)^24Sn-1=(an-1+1)^2n-1为下标则4an=4Sn-4Sn-1=(an+1)^2-(an-1+1)^2化简得(an-1)^2=(an-1+1)^2则an-1=正负(a
证明:∵Sn=an(an+1)2∴S1=a1(1+a1)2∴a1=1…(1分)由2Sn=a2n+an2Sn-1=a2n-1+an-1⇒2an=2(Sn-Sn-1)=a2n-a2n-1+an-an-1…
因为2Sn=an^2+n-4,所以2S(n-1)=a(n-1)²+n-1-4.两式相减2an=an^2-a(n-1)²+1,a(n-1)²=an^2-2an+1=(an-
A(4)4=4X3X2X1=24再问:我也这么想,但是答案却说无法确定,不知是答案错了还是。。。。再答:该是答案错了
设bn=根号an所以A(n-1)-An=(2倍根号An)+1等于根号[b(n-1)]^2-bn^2=2bn+1即[b(n-1)]^2=(bn+1)^2因为{a}中各项为正数,且a1=2所以b(n-1)
1.n=1时,2a1=2S1=a1²+1-4a1²-2a1-3=0(a1+1)(a1-3)=0a1=-1(数列各项均为正,舍去)或a1=3n≥2时,2an=2Sn-2S(n-1)=
n=1时,2a1=2S1=a1^2+1-4a1^2-2a1-3=0(a1+1)(a1-3)=0a1=-1(数列各项均为正,舍去)或a1=3n≥2时,2an=2Sn-2S(n-1)=an^2+n-4-a
第一部分:补充:an=2n稍后上传第二部分再问:嗯嗯再答:稍微有点复杂,但是肯定没错。可能有更好的拆法,等老师评讲的时候仔细听一下。5/3=1500/900看我算的这么辛苦,采纳一下吧!
等比数列,则:a1a3=(a2)²,a3a5=(a4)²,则:a1a3+2a2a4+a3a5=(a2)²+2a2a4+(a4)²=(a2+a4)²=1
6Sn=an^2+3an+26S(n-1)=a(n-1)^2+3a(n-1)+26Sn-6S(n-1)=6an=an^2+3an+2-a(n-1)^2-3a(n-1)-26an=an^2+3an-a(
1)6Sn=An^2+3An+2因为S1=A1所以6A1=A1^2+3A1+2A1^2-3A1+2=0(A1-1)(A1-2)=0因为A1=S1>1所以A1=2因为An=Sn-S(n-1)注S(n-1
当n=1时,S1=a1=1/2(a1^2+a1),解得a1=1当n>1时,an=Sn-S(n-1)=1/2(an^2+an)-1/2[a(n-1)^2+a(n-1)],整理得[an+a(n-1)][a
(1)当n=1时,a1=s1=14a21+12a1−34,解出a1=3,又4Sn=an2+2an-3①当n≥2时4sn-1=an-12+2an-1-3②①-②4an=an2-an-12+2(an-an
本题需要先对an的取值范围进行判断,然后才能用取对数、用待定系数法,因此过程比较复杂.a0=10
log2A(n+1)=log2An+1=log2[2An],则:A(n+1)=2An,则[A(n+1)]/[An]=2=常数,则数列{An}是以A1=1为首项、以q=2为公比的等比数列,得:An=2^
Sn、an、1成等差,则2an=Sn+1(n=1时,得a1=1),当n≥2时,有2a(n-1)=S(n-1)+1,则2an-2a(n-1)=an,即an/[a(n-1)]=2=常数,所以{an}是等比