已知数列an满足a1 3a2 5a3 (2n-1)an

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:35:25
已知数列an满足a1 3a2 5a3 (2n-1)an
已知数列{an}满足a

由an+1+an−1an+1−an+1=n可得an+1+an-1=nan+1-nan+n∴(1-n)an+1+(1+n)an=1+n∴an+1=n+1n−1an−n+1n−1=1n−1(an−1)×(

已知数列an满足an=1+2+...+n,且1/a1+1/a2+...+1/an

an=1+2+3+…+n=[n(n+1)]/2则:1/(an)=2/[n(n+1)]=2[(1/n)-1/(n+1)],所以:M=1/(a1)+1/(a2)+1/(a3)+…+1/(an)=2[1/1

数列{an}满足a

∵an+an+1=12(n∈N*),a1=−12,S2011=a1+(a2+a3)+(a4+a5)+…+(a2010+a2011)=-12+12+…+12=−12+12×1005=502故答案为:50

已知数列{an}满足a1=100,an+1-an=2n,则a

a2-a1=2,a3-a2=4,…an+1-an=2n,这n个式子相加,就有an+1=100+n(n+1),即an=n(n-1)+100=n2-n+100,∴ann=n+100n-1≥2n•100n-

已知数列{an}满足an+1=2an+n+1(n∈N*).

(1)由已知a2=2a1+2,a3=2a2+3=4a1+7,若{an}是等差数列,则2a2=a1+a3,即4a1+4=5a1+7,得a1=-3,a2=-4,故d=-1.  &nbs

已知数列{an}满足an=2an-1+2n+2,a1=2

你把这个数列看成俩部分a(n1)=2a(n1-1)a(n2)=2n+2an=(an1)+(an2)算算看

已知数列{an}满足:a1+a2+a3+.+an=n^2,求数列{an}的通项an.

由题意,Sn=n^2,则a1=1,S(n-1)=(n-1)^2=n^2-2n+1,n>=2an=Sn-S(n-1)=n^2-n^2+2n-1=2n-1,n>=2由于当n=1时,2n-1=1=a1所以,

已知数列{an}满足a1=1/2,an+1=3an+1,求数列{an}通项公式

a(n+1)=3an+1a(n+1)+1/2=3an+3/2=3(an+1/2)[a(n+1)+1/2]/(an+1/2)=3,为定值.a1+1/2=1/2+1/2=1数列{an+1/2}是以1为首项

已知数列{an}满足3an+1+an=0,a2=-43

∵3an+1+an=0∴an+1an=−13,∴数列{an}是以-13为公比的等比数列∵a2=-43,∴a1=4由等比数列的求和公式可得,s10=4(1−(−13)10)1+13=3(1-3-10).

已知数列{an}满足a1=1,an+1=2an+2.

an+1=2an+2,an=-1,把an=-1代入bn=2^n/an,得,bn=-2^nb2-b1=-2^*2-(-2)=-6,所以{bn}是等差数列

已知数列{an}满足a1+a2+a3+.+an=n的平方,求数列通项

设前n项和为Sn,Sn=n的平方,那么前(n-1)项S(n-1)的和为(n-1)的平方.Sn-S(n-1)=an{an}的通项就是n的平方减(n-1)的平方结果是2n-1哎呀我的妈呀不会打n的平方累死

已知数列{an}满足a1=1,an+1=3an+1.

(1)在an+1=3an+1中两边加12:an+12=3(an−1+12),…2分可见数列{an+12}是以3为公比,以a1+12=32为首项的等比数列.…4分故an=32×3n−1−12=3n−12

若数列{An}满足An+1=An^2,则称数列{An}为“平方递推数列”,已知数列{an}中,a1=9,点(an,an+

x=anf(x)=a(n+1)代入函数方程a(n+1)=an^2+2ana(n+1)+1=an^2+2an+1=(an+1)^2满足平方递推数列定义,因此数列{an+1}是平方递推数列.a1+1=10

已知数列{an}满足an+1=2an+3.5^n,a1=6.求an

a(n+1)-2an=3.5^n,则a2-2a1=3.5^1a3-2a2=3.5^2.a(n+1)-2an=3.5^n以上式子相加,得a(n+1)-a1-Sn=3.5+3.5^2+...+3.5^n=

已知数列{An}满足A1=1,An+1=2An+2^n.求证数列An/2是等差数列

你应该是抄错题了吧--A(n+1)=2An+2^n等式两边同时除以2^(n+1)有A(n+1)/2^n+1=An/2^n+1/2设Bn=An/2^n则B(n+1)=Bn+0.5Bn是等差数列即An/2

已知数列{an},如果数列{bn}满足b1=a1,bn=an+a(n-1)则称数列{bn}是数列{an}的生成数列

d(n)=2^n+n,p(1)=d(1)=2^1+1=3,p(n+1)=d(n+1)+d(n)=2^(n+1)+(n+1)+2^n+n=3*2^n+2n+1,L(2n-1)=d(2n-1)=2^(2n

已知数列{an}满足an+1=an+n,a1等于1,则an=?

A2=A1+1A3=A2+2A4=A3+3.An=A(n-1)+(N-1)左式上下相加=右式上下相加An=A1+[1+2+3+...+(N-1)]An=1+[N(N-1)]/2