已知数列an满足sn=2n-an

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:05:37
已知数列an满足sn=2n-an
已知数列{an}的前n项和Sn=3×(3/2)^(n-1)-1,数列{bn}满足bn=a(n+1)/log3/2(an+

(1)a1=S1=3-1=2n>1时,an=Sn-S(n-1)=3*(3/2)^(n-2)*(3/2-1)=(3/2)^(n-1)n=1不符合此式,故an=2,n=1an=(3/2)^(n-1),n>

已知数列an的前n项和为sn=b*2^n+a,数列an为等比数列.a,b应满足的条件

Sn=a1(q^n-1)/(q-1)=a1q^n/(q-1)-a1/(q-1)=b*2^n+a根据等式左右两边相等,得q=2,a1/(q-1)=b,-a1/(q-1)=a所以应满足a+b=0

已知数列{an}的前n项和为Sn,满足an+Sn=2n.

(Ⅰ)证明:由a1+s1=2a1=2得a1=1;由an+Sn=2n得an+1+Sn+1=2(n+1)两式相减得2an+1-an=2,即2an+1-4=an-2,即an+1-2=12(an-2)是首项为

已知数列{a}的前n项和Sn,通项an满足Sn+an=1/2(n^2+3n-2),求通项公式an

2a[n]-n-1=a[n-1]【1】待定系数:2(a[n]+xn+y)=a[n-1]+x(n-1)+y【2】将【1】式a[n-1]代入上式:(注意:也可变换后用a[n]代入上式,看方便确定)2(a[

已知数列{an}满足Sn=2n-an(n属于N*),证明{an-2}是等比数列

Sn=2n-an,(1)S(n+1)=2*(n+1)-a(n+1)(2)(2)-(1)得:a(n+1)=2-a(n+1)+an.即:2*a(n+1)=2+an.变形:2*[a(n+1)-2]=an-2

求证等差数列!已知数列an的各项均为正数,前n项和为Sn,且满足2Sn=a∧2n+n-4

n=1时,2a1=2S1=a1^2+1-4a1^2-2a1-3=0(a1+1)(a1-3)=0a1=-1(数列各项均为正,舍去)或a1=3n≥2时,2an=2Sn-2S(n-1)=an^2+n-4-a

已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an

因为Sn+Sn-1=3an所以Sn-1+Sn-1+an=3an2Sn-1=2anSn-1=an因为Sn=an+1所以Sn-Sn-1=an+1-anan=an+1-an2an=an+1an+1/an=2

已知数列{an}的前n项和sn满足sn=an^2+bn,求证{an}是等差数列

n=1时,a1=S1=a+bn≥2时,Sn=a×n²+bnS(n-1)=a×(n-1)²+b两式相减得:an=Sn-S(n-1)=2a×n-a∴a(n-1)=2a×(n-1)-a∴

已知数列{an}满足a1=1,a(n+1)=sn+(n+1)

a(n+1)=sn+(n+1),递推一项a(n)=s(n-1)+n两式相减a(n+1)-a(n)=a(n)+1,所以a(n+1)+1=2*(a(n)+1)a(n)+1成等比,推得a(n)+1=2^(n

超难数列题哦已知数列{an}的前n项和为Sn,且数列{an}满足Sn=1/2a(n-1)首项a1=1,求数列{an}通项

an=Sn-Sn-1(n>=2)an=1/2a(n-1)-1/2a(n-2)=(1/2)a将a=1代入an不符,则该数列以分段的形式构成an=1(当n=1),an=1/2a(n>=2)

已知数列(an)的前n项和为Sn,满足an+Sn=2n,证明数列(an-2)为等比数列并求出an

an+Sn=2n令n=1a1+S1=2=>a1=1又a(n-1)+S(n-1)=2(n-1)与上式作差an-a(n-1)+an=22an-a(n-1)=2an-2=(1/2)[a(n-1)-2]得证a

已知数列{an}满足a1=1,a(n+1)=3an+2,求数列{an}的前n项和Sn.

a(n+1)=3an+2a(n+1)+1=3(an+1)an=3^(n-1)*(a1+1)-1=2*3^(n-1)-1Sn=2(1+3+……+3^(n-1))-n=2*[(3^n-1)/(3-1)]-

已知数列{an}的前n项和Sn满足条件Sn=3a+2,求证数列{an}成等比数列

题目条件应为:Sn=3an+2an=Sn-S(n-1)(n≥2)=3an-3a(n-1)(n≥2)=>an/a(n-1)=3/2.∴数列{an}成等比数列当n=1时,a1=3a1+2a1=-1.=>a

已知数列{an}满足a1=1/2,sn=n^2an,求通项an

∵s[n]=n^2a[n]∴s[n+1]=(n+1)^2a[n+1]将上述两式相减,得:a[n+1]=(n+1)^2a[n+1]-n^2a[n](n^2+2n)a[n+1]=n^2a[n]即:a[n+

已知数列{an}满足ak+a(n-k)=2,(k,n-k∈N*),则数列{an}的前n项和Sn=

2=a(k)+a(n-k),2=a(k)+a(n+1-k).2=a(1)+a(n+1-1)=a(2)+a(n+1-2)=a(3)+a(n+1-3)=...s(n)=a(1)+a(2)+a(3)+...

已知正项数列an的前n项和为sn,且满足:an平方=2sn-an(n属于N*).求an的通项公式;2.求数列{an,2a

(An)^2=2Sn-An=>(A(n-1))^2=2S(n-1)-A(n-1)=>(An)^2-(A(n-1))^2=2Sn-An-2S(n-1)+A(n-1)=>(An+A(n-1))*(An-A

已知数列{an},满足a1=1/2,Sn=n²×an,求an

/>n≥2时,Sn=n²×anS(n-1)=(n-1)²×a(n-1)an=Sn-S(n-1)=n²×an-(n-1)²×a(n-1)(n²-1)an

已知数列{a(n)}Sn是其前n项的和,且满足3an=2Sn+n(n∈N※)

(1)3an=2Sn+n...①3an+1=2Sn+1+n+1...②②-①得:3an+1-3an=2an+1+1即an+1=3an+1==>an+1+1/2=3(an+1/2)an+1+1/2/an