已知数列an的通项公式是an=n2 kn 4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:50:28
已知数列an的通项公式是an=n2 kn 4
已知数列an是等差数列,且a1=1,a4=-27,求数列an的通项公式

数列an是等差数列,设公差为da4=-27a1+3d=-271+3d=-27d=-28/3an=a1+(n-1)d=1+(n-1)(-28/3)=(31-28n)/3

已知数列an满足a1=4 an=4-4/an-1(n大于等于2) 求证bn是等差数列 求数列an的通项公式

an=4-4/a(n-1)an-2=2-4/a(n-1)=2{[a(n-1)-2]/a(n-1)}于是有1/(an-2)=1/2+1/[a(n-1)-2]所以有bn=1/2+b(n-1)即bn-b(n

数列问题:已知数列{an}的通项公式是an=3n+2^n-1求数列{an}的前项和Sn

Sn=a1+a2+……+an=(3*1+2^1-1)+(3*2+2^2-1)+……+(3*n+2^n-1)=(3*1+3*2+……+3*n)+(2^1+……2^n)-n=3n(n+1)/2+2(1-2

已知数列{an},a1=2,an+1=an+2n,则数列的通项公式an=?

an+1=an+2n推出an=an-1+2(n-1)...a2=a1+2累加得an=a1+2(2+3+4+...n-1)an=2+n(n-1)an=n^2-n+2(n>=1)

已知数列{An},Sn=2的n次方.求数列{An}的通项公式

由于Sn=2^n则:S1=a1=2^1=2当n>=2时,an=Sn-S(n-1)=2^n-2^(n-1)=[2*2^(n-1)]-2^(n-1)=2^(n-1)又a1=2则:an=2^(n-1)(n>

已知数列{an}中a1=3且an+1=an+2n.求数列的通项公式

a(n+1)-an=2n所以a2-a1=2a3-a2=4a4-a3=6……an-a(n-1)=2(n-1)相加得an-a1=2+4+6+……+2(n-1)=n(n-1)所以当n>1时,an=n(n-1

已知数列{an}的前n项和Sn=12n-n²,求数列{an}的通项公式,(1)证明数列{an}是等差数列.

an=sn-s(n-1)=13-2n(n>1)a1=s1=11所以an=13-2n(n>0)当n>1,有an-a(n-1)=-2所以an是等差数列再问:(2)求数列﹛|an|﹜前n项的和。再答:前n项

已知数列{an}的通项公式an

an=(1+2+...+n)/n=(1+n)*n/2n=(1+n)/2a(n+1)=(n+2)/2bn=1/an·a(n+1)=4/(n+1)(n+2)=2/(n+1)-2/(n+2)S(bn)=b1

已知数列an是等比数列,且a1=1,a4=-27,求数列an的通项公式

等比数列的基本公式:An=A1*q^(n-1),q是公比,n是第n项.a4=a1*q^(4-1)→27=1*q^3→q^3=27→q=27^1/3=3,所以an=3^(n-1)就是an的通项公式

已知数列{an}的通项公式是an=2n,Sn是数列{an}的前n项和,则S10等于(  )

由题意可得a1=21=2,an+1an=2n+12n=2,故数列{an}是首项为2,公比为2的等比数列,故S10=2(1−210)1−2=211-2故选D.

已知数列{an}中a1=1,an+1-an=3n,求数列{an}的通项公式.

此类题目采用累加法或迭代法∵an+1-an=3n(往下递推)∴an-an-1=3(n-1)an-1-an-2=3(n-2).a3-a2=3×2a2-a1=3×1以上格式左边+左边=右边+右边左边相加的

已知数列an是等差数列 其中a2=22 a7=7 求数列an的通项公式

a2=22,a7=7,可以算出公差d=-3得出an=a1+(n-1)d=22-(n-3)*3

已知数列{an}的通项公式是an=n²-8n+5,写出这个数列的前五项

很高兴回答你的问题:an=Sn-S(n-1)=4n^2-n-[4(n-1)^2-(n-1)]=8n-3如果不太明白为什么是4(n-1)^2-(n-1),那么,我告诉你:这是套个公式Sn=4n^2-nS

已知数列an是等比数列,a1=8,a5=512,求数列an的通项公式

数列an的通项公式为an=(2√2)^(n+1)或an=(-2√2)^(n+1)设等比数列的公比为q,则有a5=a1*q^4,代入a1、a5得到512=8*q^4可以解得q=2√2或q=-2√2当q=

已知数列{an}的通项公式为an=-2n+kn,若数列{an}是递减数列,则实数k的取值范围是

a(n+1)-an=-2(n+1)^2+k(n+1)-(-2n^2+kn)=-4n-2+k由于数列{an}为递减数列,则对于任意的n∈N*总有a(n+1)-an≤0恒成立即:-4n-2+k≤0对于任意

已知数列{An}的通项公式An=1/n(n+1),求数列{An}的前五项和

An=1/n(n+1)=1/n-1(n+1)S5=a1+a2+a3+a4+a5=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6=1-1/6=5/6A

已知数列{an},a1=1,an+1=3an/2an+3,(1)求数列{an}的前五项)(2)数列{an}的通项公式

(1)a(n+1)=3an/(2an+3)a1=1a2=3a1/(2a1+3)=3/5a3=3a2/(2a2+3)=3/7a4=3a3/(2a3+3)=3/9=1/3a5=3a4/(2a4+3)=3/

已知{an}的通项公式是an=n/(n^2+196),求数列{an}的中的最大值

an=n/(n^2+196),(n为正整数)an=1/(n+196/n)≤1/[2*根号(n*196/n)]=1/28所以{an}的最大值为1/28