已知数列an的首项为1,其前n项的和为sn,且满足an=2sn² 2sn-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:59:04
已知数列an的首项为1,其前n项的和为sn,且满足an=2sn² 2sn-1
已知数列首项a1=1/2,其前n项和为Sn=n2(平方)an,则数列{an}的头像公式为?

Sn=n^2*an,a1=1/2当n≥2时有S(n-1)=(n-1)^2*a(n-1)所以an=Sn-S(n-1)=n^2*an-(n-1)^2*a(n-1)即(n^2-1)an=(n-1)^2*a(

已知数列An中,其前n项和为Sn,A1=1,且An+1=2Sn 求数列an的通项公式

因为An+1=2SnAn=2S(n-1)所以A(n+1)-An=2AnA(n+1)/An=3是公比为3,首项a1=1的等比数列,An=A1*q^(n-1)即An=3^(n-1)

已知数列{an}的通项公式an=log2n+1分之n+2,设其前n项为S 求Sn?

因an=log2[(n+2)/(n+1)]=log2(n+2)-log2(n+1),n应该从1开始.所以Sn=log2(3)-log2(2)+log2(4)-log2(3)+...+log2(n+2)

已知数列an的前n项和为Sn=n²+n+1,则其通项公式an=?

∵Sn=n²+n+1,∴a1=S1=1+1+1=3,当n≥2时,an=Sn-Sn-1(n-1是下标)=(n²+n+1)-[(n-1)²+(n-1)+1]=2n.当n=1时

已知数列{an}的前n项和公式为Sn=5n^2-3n-1,则其通项公式为

Sn=5n^2-3n-1S(n-1)=5(n-1)^2-3(n-1)-1=5n^2-13n+7a(n)=S(n)-S(n-1)=10n-8n≥2a(1)=S(1)=5-3-1=1故a(n)=10n-8

已知数列{an}各项均为正数,其前N项和为sn,且满足4sn=(an+1)^2.求{an}的通项公式

4Sn=(an+1)^24Sn-1=(an-1+1)^2n-1为下标则4an=4Sn-4Sn-1=(an+1)^2-(an-1+1)^2化简得(an-1)^2=(an-1+1)^2则an-1=正负(a

已知数列{an}其通项公式为an=2的n次方分之2n-1 求数列的前n项和 Sn

/>错位相减求和Sn=1/2^1+3/2^2+5/2^3+.+(2n-3)/2^(n-1)+(2n-1)/2^n①‘①×1/2(1/2)Sn=1/2^2+3/2^3+.+(2n-3)/2^n+(2n-

通项公式!数列.已知数列{an}的首项a1=2,其前n项和为Sn,当n大于等于2时,满足an-2^n=S(n-1),又b

Sn-S(n-1)-2^n=S(n-1)Sn/2^n-S(n-1)/2^(n-1)=1S1=1soSn/2^n=nSn=n*2^nan=Sn-S(n-1)=n*2^n-(n-1)2^(n-1)an/2

已知数列{an}的通项公式为an=(2^n-1)/2^n,其前n项和sn=321/64,则项数n等于

an=(2^n-1)/2^n=1-(1/2)^nSn=n-1/2(1-(1/2)^n)/(1-1/2)=n-1+(1/2)^n=321/64解得n=6

已知数列An满足An>0,其前n项和为Sn为满足2Sn=An的平方+An(1)求An(2)设数列Bn满足An/2的n次方

(1)2Sn=an^2+an2Sn-1=a(n-1)^2+a(n-1)2an=2Sn-2Sn-1=an^2-a(n-1)^2+an-a(n-1)an^2-a(n-1)^2=an+a(n-1)[an+a

已知数列An中,其前n项和为Sn,A1=1,且An+1=2Sn,求An的通项公式和Sn

因为:An+1=2Sn,则A(n-1)+1=2S(n-1)那么:2Sn-2S(n-1)=(An+1)-(A(n-1)+1)(n>=2)又因为:2Sn-2S(n-1)=2An(n>=2)所以:2An=(

已知数列{an}中,an=8n/((2n-1)^2(2n+1)^2),sn为其前n项的和,归纳sn的公式

(2n+1)^2-(2n-1)^2=4n^2+4n+1-(4n^2-4n+1)=8nAn=[(2n+1)^2-(2n-1)^2]/[(2n-1)^2(2n+1)^2]=(2n+1)^2/[(2n-1)

已知数列{An},Sn是其前n项和,且满足3An=2Sn+n,n为正整数,求证数列{An+1/2}为等比数列

1.证:Sn=(3an-n)/2Sn-1=[3a(n-1)-(n-1)]/2an=Sn-Sn-1=[3an-3a(n-1)-1]/2an=3a(n-1)+1an+1/2=3a(n-1)+3/2=3[a

已知数列{an}中,an>0(n∈N),其前n项和为Sn,且S1=2,当n>2时,Sn=2an 1求数列{an}的通项公

1.数列的第n项:a(n)=S(n)-S(n-1)=2a(n)-2a(n-1)移项得a(n)=2*a(n-1)所以n≥2时数列{a(n)}为公比q=2的等比数列;a(2)=S(2)-S(1)=2a(2

已知数列{an}的前n项和为Sn

解题思路:方法:数列通项的求法:已知sn,求an。求和:错位相减法。解题过程:

已知数列{an}的通项公式an=2n+1(n∈N*),其前n项和为Sn,则数列{S

∵数列{an}的通项公式an=2n+1,∴Sn=n(3+2n+1)2=n2+2n,∴Snn=n+2,∴数列{Snn}的前10项的和为10(3+12)2=75.故答案为:75.

已知数列{an}中,an=n(2的n次方-1),其前n项和为Sn,则Sn+1/2n(n+1)等于?

an=n(2^n-1)an=n*2^n-na1=1*2^1-1a2=2*2^2-2a3=3*3^3-3.an=n*2^n-nSn=a1+a2+a3+.+an=1*2^1-1+2*2^2-2+3*3^3

已知数列{an}的通项公式an=log2[(n+1)/(n+2)](n∈N),设其前n项的和为Sn,则使Sn

an=log2(n+1)-log2(n+2)Sn=log2(2)-log2(3)+log2(3)-log2(4)+.+log2(n)-log2(n+1)+log2(n+1)-log2(n+2)=log