已知数列{an}中,Sn=2n² 2n,求通项公式an
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 13:11:19
数列{a(n)}中,已知s(n)=a(n)-1/s(n)-2,①:求出s(1),s(2),s(3),s(4),②:猜想数列{a(n)}的前n项和s(n)的公式,并加以证明s(1)=a(1)=a(1)-
(Sn)²=[Sn-S(n-1)](Sn-1/2)(Sn)²=(Sn)²-Sn/2-SnS(n-1)+S(n-1)/2Sn+2SnS(n-1)-S(n-1)=0S(n-1
因为An+1=2SnAn=2S(n-1)所以A(n+1)-An=2AnA(n+1)/An=3是公比为3,首项a1=1的等比数列,An=A1*q^(n-1)即An=3^(n-1)
sn=3*3^1+5*3^2+.+(2n+1)*3^n①3sn=3*3^2+5*3^3+.+(2n-1)*3^n+(2n+1)*3^(n+1)②①-②-2Sn=Sn-3Sn=-2n*3^(n+1),因
因为Sn=n^2*an.1Sn-1=(n-1)^2*an-1n≥2.21-2:an=n^2*an-(n-1)^2*an-1(n^2-1)*an=(n-1)^2*an-1(n+1)*an=(n-1)*a
an=Sn-Sn-1=4n+1(n>=2),a1=2*1+3=5,满足上式,an通项就是4n+1,即证实等差数列
(1)证明:∵Sn-2an=2n,①∴Sn+1-2an+1=2(n+1).②②-①,得:an+1-2an+1+2an=2,∴an+1=2an-2,∴an+1-2an-2=(2an-2)-2an-2=2
因为:An+1=2Sn,则A(n-1)+1=2S(n-1)那么:2Sn-2S(n-1)=(An+1)-(A(n-1)+1)(n>=2)又因为:2Sn-2S(n-1)=2An(n>=2)所以:2An=(
sn=n^2ans(n-1)=(n-1)^2*a(n-1)sn-s(n-1)=n^2an-(n-1)^2*a(n-1)=an(n^2-1)an=(n-1)^2a(n-1)(n+1)an=(n-1)a(
n=1时,a1=S1=k+2n≥2时,Sn=2n²+kS(n-1)=2(n-1)²+kan=Sn-S(n-1)=2n²+k-2(n-1)²-k=4n-2数列{a
已知a_(n+1)=S_n得a_n=S_(n-1)(n>1)两式相减a_(n+1)-a_n=S_n-S_(n-1)=a_n(n>1)得a_(n+1)=2a_n(n>1)因为a_2=S_1=a_1=-2
解;当n>=2时a(n+1)=snan=s(n-1)a(n+1)-an=an∴2an=a(n+1)∴a(n+1)/an=2当n=1时a2=a1=-2∴an={-2n=1{-2^(n-1)n>=2∴sn
S(n)=S(n-1)/[2S(n-1)+1]1/S(n)=2+1/S(n-1)所以{1/S(n)}为等差数列,d=2所以1/S(n)=2n-1(n>=2),代入a1=S1=1,2n-1=1,所以n=
Sn=a1+a2+``````+an=2x1+2^1-1+````+2n+2^n-1=2x(1+2+`````+n)+(2^1+```+2^n)-n=n^2+n+2^(n+1)-2-n=2^(n+1)
n>=2时:∵an=2Sn^2/[(2Sn)-1]∴Sn-(Sn-1)=2Sn^2/[(2Sn)-1]两边同时乘以(2Sn)-1并化简得2Sn(Sn-1)+Sn-(Sn-1)=0两边同时除以Sn(Sn
Sn=n(an+1)/2S(n+1)=(n+1)[a(n+1)+1]/2用下式减上式a(n+1)=[(n+1)a(n+1)-nan+1]/2即2a(n+1)=[(n+1)a(n+1)-nan+1]即(
因为2√S(n)=a(n)+12√S(n+1)=a(n+1)+1所以两式平方相减4(S(n+1)-S(n))=[a(n+1)+1]^2-[a(n)+1]^24·a(n+1)=[a(n+1)]^2+2·
sn=a1+a2+a3+.+an=(1^2+2^2+3^2+.+n^2)-(1+2+3+...+n)+2n=n(n+1)(n+2)/6-n(1+n)/2+2n再问:三次方?这是什么数列?再答:an=n
an=n(2^n-1)an=n*2^n-na1=1*2^1-1a2=2*2^2-2a3=3*3^3-3.an=n*2^n-nSn=a1+a2+a3+.+an=1*2^1-1+2*2^2-2+3*3^3