已知数列{an}的首项为a1=3 5,a(n 1)=3an 2an 1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:11:22
已知数列{an}的首项为a1=3 5,a(n 1)=3an 2an 1
强大的数学题:设数列{An}的前N项和为Sn已知A1=.

因为:(5n-8)Sn+1-(5n+2)Sn=-20n-8...(1)所以:(5(n+1)-8)Sn+2-(5(n+1)+2)Sn+1=-20(n+1)-8即:(5n-3)Sn+2-(5n+7)Sn+

已知数列{an},{bn}都是公差为1的等差数列,其首项分别为a1,b1,且a1+b1=5,a1,b1∈N*,设c

∵a1+b1=5,a1,b1∈N*,∴a1,b1有1和4,2和3,3和2,4和1四种可能,当a1,b1为1和4的时,c1=ab1=4,前10项和为4+5+…+12+13=85;当a1,b1为2和3的时

已知a1=1,an+1=2an+1,则数列{an}的通项公式为______.

由an+1=2an+1,得an+1+1=2(an+1),又a1+1=2,∴{an+1}是以2为首项、2为公比的等比数列,∴an+1=2•2n-1=2n,∴an=2n-1,故答案为:an=2n-1.

已知数列首项a1=1/2,其前n项和为Sn=n2(平方)an,则数列{an}的头像公式为?

Sn=n^2*an,a1=1/2当n≥2时有S(n-1)=(n-1)^2*a(n-1)所以an=Sn-S(n-1)=n^2*an-(n-1)^2*a(n-1)即(n^2-1)an=(n-1)^2*a(

一道高2数学的数列题已知数列{an}的首项为a1=2,an=[1/(an-1)]-1(n>1),求此数列的通项公式{an

两边配,加一个p,然后取倒数法,可以推出两边加2取倒数,发现1/(an+2)=1-2/(a(n-1)+2)(一般可以配成1/(an+p)=q*1/(a(n-1)+p)+k的形式)这个常见形式可以求

已知数列an的前n项和为Sn,Sn=三分之一×【a1-1】求a1,a2 .求证数列an是等比数列

题目是这样的吗?已知数列{an}的前n项和为sn,sn=1/3(an-1)(n属于N+)(1)求a1、a2(2)求证数列{an}是等比数列(1):sn=1/3(an-1)n=1s1=a1=1/3(a1

已知数列{an},a1=1,an+1=2an2+an,则该数列的通项公式为an= ___ .

因为an+1=2an2+an,所以1an+1-1an=12∵a1=1,∴1a1=1∴{1an}是首项为1,公差为12的等差数列∴1an=1+(n-1)×12=n+12,∴an=2n+1故答案为:2n+

已知数列{an}中,a1=1,an+1=2an-3,则数列{an}的通项公式为(  )

∵数列{an}中,a1=1,an+1=2an-3,∴an+1-3=2(an-3),a1-3=-2,∴an+1−3an−3=2,∴{an-3}是首项为-2,公比为2的等比数列,∴an−3=(−2)•2n

已知一个等比数列{an}的首项为a1,公比为q,取出数列{an}中的所有奇数项,组成一个新的数列,这个新数列是

是等比数列.奇数项a1,a3,a5,.,公比为q².每隔10项取出一项也等比,a1,a11,a21,...,公比为q^10一般地,每隔m项取出一项成等比(m∈N*),即a1,a(m+1),a

已知等差数列{An}的首项为a1,公差为d,数列{Bn}中,bn=3an+4,试判断该数列是否为等

等差数列{An}的首项为a1,公差为dAn=a1+(n-1)dBn=3[a1+(n-1)d]+4Bn=3a1+3(n-1)d+4B(n-1)=3a1+3(n-1-1)d+4=3a1+3(n-2)d+4

已知数列{an}的首项a1=2,an+1=2a

∵an+1=2anan+2,∴1an+1=an+22an=12+1an,即1an+1-1an=12,∴数列{1an}是等差数列,公差d=12,首项12,∴1an=12+12(n-1)=n2,即an=2

已知公差不为0的等差数列{An}的首项A1=1,前n项和为Sn,若数列{Sn/An}是等差数列,求An?

S1/a1=1S2/a2-S1/a1=(2+d)/(1+d)-1=d/(1+d)S3/a3-S1/a1==(3+3d)/(1+2d)-1=(2+d)/(1+2d)2*d/(1+d)=(2+d)/(1+

已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an

因为Sn+Sn-1=3an所以Sn-1+Sn-1+an=3an2Sn-1=2anSn-1=an因为Sn=an+1所以Sn-Sn-1=an+1-anan=an+1-an2an=an+1an+1/an=2

已知数列{an}满足a1=1,an+1=2an+1 1)求证:数列{an+1}为等比数列; 2) 求{an}的通项an

a(n+1)+1=2an+2=2(an+1)[a(n+1)+1]/(an+1)=2所以an+1是等比数列[a(n+1)+1]/(an+1)=2则q=2所以an+1=(a1+1)*2^(n-1)=2^n

已知数列an的首项a1=3/5,an+1=3an/2an+1

要证明的结论有问题吧,应该是证明“对任意的x>0,an≥1/(1+x)-1/(1+x)²*[2/(3^n+2)+x],n=1,2,……”吧?证明:a(n+1)=3a(n)/[2a(n)+1]

已知数列{an}满足a1=1,an+1=2an/(an+2)(n∈N+),则数列{an}的通项公式为

a(n+1)=2an/(an+2)1/a(n+1)=(an+2)/(2an)=1/an+1/21/a(n+1)-1/an=1/2,为定值.1/a1=1/1=1数列{1/an}是以1为首项,1/2为公差

已知数列{an}满足a1=1,an-a(n+1)=ana(n+1),数列{an}的前n项和为Sn.(1)求证:{1/an

an-a(n+1)=ana(n+1)【两边同除以ana(n+1)】得:1/[a(n+1)]-1/[a(n)]=1即:数列{1/(an)}是以1/a1=1为首项、以d=1为公差的等差数列.则:1/[a(

已知数列an的首项a1=1,an+1=3sn(n≥1),则数列an的通项公式为?

a(n+1)=3Snan=Sn-S(n-1)3an=3Sn-3S(n-1)=a(n+1)-ana(n+1)=4an{an}是以a1为首项,4为公比的等比数列an=4^(n-1)

已知各项均为正数的数列{an}的首项a1=1,且log2An+1=log2An +1,数列{bn-an}是等差数列,首项

log2A(n+1)=log2An+1=log2[2An],则:A(n+1)=2An,则[A(n+1)]/[An]=2=常数,则数列{An}是以A1=1为首项、以q=2为公比的等比数列,得:An=2^