已知数列的前n项和为sn,且A1=3,AN=2S(N-1) 3^N
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:24:11
1、Sn=(a1+an)n/2所以nan/Sn=2an/(a1+an)=2[a1+(n-1)d]/[2a1+(n-1)d]上下除以(n-1)=2[a1/(n-1)+d]/[2a1/(n-1)+d]n-
a(1)=s(1)=1-5a(1)-85,6a(1)=-84,a(1)=-14.a(n+1)=s(n+1)-s(n)=(n+1)-5a(n+1)-85-[n-5a(n)-85]=1-5a(n+1)+5
向量a=(n,Sn)b=(4,n+3)共线所以n(n+3)-4Sn=0Sn=n(n+3)/4a1=S1=1n>=2:an=Sn-S(n-1)=n(n+3)/4-(n-1)(n+2)/4=(n+1)/2
证明:∵Sn=an(an+1)2∴S1=a1(1+a1)2∴a1=1…(1分)由2Sn=a2n+an2Sn-1=a2n-1+an-1⇒2an=2(Sn-Sn-1)=a2n-a2n-1+an-an-1…
an=Sn-S(n-1)=(1/2)^n-(1/2)^(n-1)=-(1/2)^na1=-1/2=1/2+aa=-1
由题得:Sn=1-nan于是有:S(n-1)=1-(n-1)a(n-1)两式相减得:an=(n-1)a(n-1)-nan移项后有:(n+1)an=(n-1)a(n-1)于是:an=[(n-1)/(n+
Sn=n-5an-85(1)S(n+1)=n+1-5a(n+1)-85(2)(2)-(1)整理得6a(n+1)=1+5an即a(n+1)-1=(5/6)(an-1)又由S1=a1=1-5a1-85得a
由Sn=n-Sa知,an=Sn-Sn-1=1(>=2).a1=1-Sa
1.n=1时,a1=S1=1²+1=2n≥2时,Sn=n²+nS(n-1)=(n-1)²+(n-1)an=Sn-S(n-1)=n²+n-(n-1)²-
(1)当n=1时,a1=S1=lg1=0(2)当n>=2时,an=Sn-Sn-1=lgn-lg(n-1)=lg(n/(n-1))所以,a1=0;an=lg(n/(n-1))(n>=2)(可把结果写成分
(1)证明:∵Sn=n-5an-85,n∈N*(1)∴Sn+1=(n+1)-5an+1-85(2),由(2)-(1)可得:an+1=1-5(an+1-an),即:an+1-1=56(an-1),从而{
∵点(an,Sn)在直线2x-y-3=0上,∴2an-Sn=3,①∴2an-1-Sn-1=3(n≥2)②①-②得:2(an-an-1)=Sn-Sn-1=an,∴an=2an-1(n≥2)又2a1-a1
n=1时,2a1=2S1=a1^2+1-4a1^2-2a1-3=0(a1+1)(a1-3)=0a1=-1(数列各项均为正,舍去)或a1=3n≥2时,2an=2Sn-2S(n-1)=an^2+n-4-a
a(n+1)-an=1/3(Sn-S(n-1))=1/3an所以a(n+1)=4/3ana1=1a2=4/3a1=4/3a3=4/3a2=(4/3)^2a4=4/3a3=(4/3)^3an=(4/3)
(1)s1=a1=2a1-2a1=2s2=a1+a2=2a2-2a2=4(2)an=sn-sn-1=5*n-3-[5*(n-1)-3]=5(n大于1)a1=2(n=1)3.在公差不为零的等差数列{an
(Ⅰ)a1=3,当n≥2时,Sn−1=23an−1+1,∴n≥2时,an=Sn−Sn−1=23an−23an−1,∴n≥2时,anan−1=−2∴数列an是首项为a1=3,公比为q=-2的等比数列,∴
2Sn=n²+n则n≥2时2S(n-1)=(n-1)²+(n-1)=n²-n相减2an=2nan=n2a1=2S1=1+1=2a1=1符合n≥2的式子所以an=n
解题思路:方法:数列通项的求法:已知sn,求an。求和:错位相减法。解题过程:
(1)把Sn=和Sn-1=表示出来,再相减,就得到An=aAn-1所以,首项为a公比为a(2)解集合A的1所以Sn>aSn=[a(1-a^n)]/(1-a)当n趋向于无穷大时,a^n趋向于零此时,令S
由Sn=13(an−1)可知Sn−1=13(an−1−1),两式相减可得,an=13(an−an−1),即anan−1=−12,(n≥2)故数列数列{an}为等比数列.公比q=−12. 又a