已知数列的前几项sn=n的平方,则

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:17:49
已知数列的前几项sn=n的平方,则
已知数列的前N项和为SN,A1=2,2sn的平方=2ansn-an(n≥2)求an和sn

因为S(n+1)-S(n)=A(n+1),根据题意有:2S(n+1)^2=2A(n+1)S(n+1)-A(n+1),将上式代入此式得:2S(n+1)^2=2[S(n+1)-S(n)]S(n+1)-S(

已知数列{an}的前n项和Sn=12N-N的平方,求数列的前N项和TN

已知数列{an}的前n项和Sn=12N-N的平方,Sn=12N-N的平方,Sn-1=12(N-1)-(N-1)的平方,Sn-Sn-1=an=13-2n,a1=11,n0,n>=7,an=7时,a7+a

已知数列(an}前n项和Sn=n的平方-48n求数列通项公式

a1=S1=1-48=-47n>=2:an=Sn-S(n-1)=[n^2-48n]-[(n-1)^2-48(n-1)]=n^2-48n-(n^2-2n+1-48n+48)=2n-49a1=2*1-49

已知数列的前嗯项和为sn=n平方+n/2.求通项公式

∵sn=n^2+n/2∴an=sn-s(n-1)=n^2+n/2-(n-1)^2-(n-1)/2=2n-1/2

已知数列an的前n项和sn且sn=n平方+n 求an的通项公式

当n=1时a1=s1=1²+1=2当n≥2时sn=n²+n---------------------------①s(n-1)=(n-1)²+(n-1)---------

已知数列an前n项和Sn=n的平方 n,求通项公式谢谢了,

上面答案要补充一下…求出an=2n-1时要验证当S1=a1=1这样才完整,如果S1不等于a1那么an就要就要以分段函数的形式来写咯

在数列{An}中,已知A1=1,Sn=n的平方乘以An,求通项An和前几项和Sn

Sn-S(n-1)=An=An*N方-A(n-1)方化简得An/[A(n-1)]=(n-1)/(n+1)A2/A1=1/3A3/A2=2/4.An/A(n-1)=(n-1)/(n+1)各项相乘得An/

已知数列{an}的前n项和为Sn=n平方+2n求通项公式an

Sn=n平方+2nS(n-1)=(n-1)²+2(n-1)an=Sn-S(n-1)=[n²-(n-1)²]+[2n-2(n-1)]=(n+n-1)(n-n+1)+2(n-

已知数列{an}前n项和Sn=Sn的平方+1,求该数列的通项公式?

你这题不对的,要么是Sn=S(n-1)的平方+1,或者Sn=an的平方+1,不然怎么算?!那是(5n)的平方还是5*(n的平方)?那我试试吧~因为Sn=(5n)^2+1;所以S(n-1)=[5(n-1

已知数列an的前n项和sn=2n的平方-n+1,求通项公式

an=Sn-S[n-1]=2n^2-n+1-2(n^2-2n+1)+n-1-1=4n-3,(当n>=2)a1=S1=2经检验a1不符合通项an=4n-3所以an通项公式为2(当n=1)an=4n-3(

已知数列{an}的前n项和为sn=32n减去n的平方,求数列{|an|}的前n项和?

an=sn-s(n-1)=32n-n^2-32(n-1)+(n-1)^2=33-2n因此,当n>16时an

高二超难数列题!已知数列an的前n项和为Sn=n平方-3n 求证数列an是等差数列

S(n+1)-Sn=a(n+1)(n+1)^2-3(n+1)-n^2+3n=2n-2所以an=2n-4a(n+1)-an=2所以是等差

已知数列{an}的前n项和Sn=n(平方)+1,则a1等于多少

Sn=n²+1Sn-1=(n-1)²+1an=Sn-Sn-1=n²+1-(n-1)²-1=2n-1a1=1再问:我也同意你的观点,我算的也是1,有的网友算的是2

已知数列{an}的前n项和为Sn=n平方-n,n属于自然数.(1)求数列{an}的通项公式

(1)an=Sn-Sn-1=2n-2(2)bn=2^[2(n-1)]+1=4^(n-1)+1令Cn=4^(n-1),Un={Cn}前n项的和.显然{Cn}是等比数列,∴Un=(4^n-1)/(4-1)

已知数列的Sn=n平方+n+1,则a8+a9+a10+a11+a12=?

a8+a9+a10+a11+a12=S12-S7=(12^2+12+1)-(7^2+7+1)=100

已知数列{an}的前几项和Sn=n平方+1,求数列的通项公式{an}

因为Sn=n^2+1a1=s1=2∴S(n-1)=(n-1)^2+1∴an=Sn-S(n-1)=n^2+1-(n-1)^2-1=2n-1n≥2,且n∈N*∴an=2n=12n-1n≥2,且n∈N*

已知数列(an)中,前n项和Sn=4n的平方+n.求an

a1=S1=4+1=5n>=2时,an=Sn-S(n-1)=4n^2+n-4(n-1)^2-(n-1)=8n-3,a1也符合.所以,an=8n-3,其中n为正整数.

已知数列(an)的前N项和SN=2N的平方减3N+1,求AN

看不懂啊是Sn=2n^2-(3n+1)还是Sn=(2n)^2-(3n+1)?题目容易令n=1求出a1=-2Sn-1=2(n-1)^2-3(3(n-1)+1)an=Sn-Sn-1=2(2n-1)-3=4

已知数列an=n^(an等于n的平方),求数列和Sn=?

(n+1)³-n³=3n²+3n+1n³-(n-1)³=3(n-1)²+3(n-1)+1……2³-1³=3×1²