已知方程x2-4x-2m 8=0的一个实根大于1,另一个小于1,求m的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 10:48:45
∵x1,x2为方程x2+4x+2=0的两实根,∴x12+4x1+2=0,x1+x2=-4,x1•x2=2,∴x12=-4x1-2,而x13=x12•x1,∴x13+14x2+55=x12•x1+14x
由方程x2+y2+4x-2y-4=0得到圆心为(-2,1),半径为3,设圆上一点为(x,y)圆心到原点的距离是(−2)2+1 2=5圆上的点到原点的最大距离是5+3故x2+y2的最大值是为(
∵x1,x2是方程2x2+3x-4=0的两个根,∴由韦达定理,得x1+x2=-32;x1•x2=-2;∴1x1+1x2=x1+x2x1•x2=−32−2=34,即1x1+1x2=34.
∵方程x2+4x+m=0的两根为x1,x2,∴x1+x2=-4,x1•x2=m,∵|x1-x2|=2,∴|x1-x2|2=4=(x1-x2)2=(x1+x2)2-4x1•x2=16-4m,∴m=3.
x1、x2为方程x2+4x+2=0的两个实数根x1+x2=-4x1x2=2x1^2+4x1+2=0x2^2+4x2+2=0x1^3+14x2+50=x1*(-2-4x1)+14x2+50=-2x1-4
(X-2)平方=2X1=2+根号2或2-根号2X2=2-根号2或2+根号2X1(平方)+X2+2=10+3根号2或10-3根号2
∵x1、x2是方程x2+4x+2=0的两个实数根,∴x1+x2=-4、x1•x2=2,∴1x1+1x2=x1+x2x1x2=−42=-2;故答案是:-2.
x2+4x+p=0>x=0或x=7所以若相等的根为0时,p=0若相等的根为7时,p=-7²-4×7=-49-28=-77
3x/(x+1)-(x+4)/(x^2+x)=-23x^2-(x+4)=-2(x^2+x)3x^2-x-4=-2x^2-2x5x^2+x-4=0(5x-4)(x+1)=0x1=4/5x2=-1经检验,
根据题意得x1+x2=-3/2x1x2=-2x³1+x³2=(x1+x2)(x²1+x²2-x1x2)=(x1+x2)[(x1+x2)²-3x1x2]
这是韦达定理x1+x2=-3/4x1x2=-2x1+x2=把根求出来才能得出记得采纳啊
2x^2+3x-4=0a=2,b=3,c=-4x1+x2=-b/2=-3/2x1*x2=c/a=-4/2=-21/x1+1/x2=(x1+x2)/(x1x2)=3/4x1^2+x2^2=(x1+x2)
题目写清楚点儿啊X1+X2=-3/2X1*X2=-2|X1-X2|=√41/2析:由根与系数的关系即得X1+X2=-3/2与X1*X2=-2而|X1-X2|^2=(X1+X2)^2-4X1*X2m=-
对于一元二次方程ax2+bx+c=0,若存在根x1、x2,则x1+x2=-b/a,x1*x2=c/a;对于本题,x1+x2=4/3,x1*x2=-2/3,所以(1)=(x1+x2)^2-2x1*x2=
1、x²+y²+2x-4y-4=(x+1)²+(y-2)²-9=0即(x+1)²+(y-2)²=9故圆心坐标为(1,2)半径R=32、圆方程
韦达定理x1+x2=4x1x2=2所以1/x1+1/x2=(x1+x2)/x1x2=2
由题意delta=4-4m>=0得m
原式可化简为(x+2)^2+(y-1)^2=9这是一个以(-2,1)为半径的圆所以x^2+y^2的最大值就是圆上一点到原点的最大距离就是圆心到原点的距离加上半径等于3+根号5