已知曲线y=1 2x^2-2上一点p(1,-3 2),则过点p的切线的倾斜角为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:49:43
x=√(4-y²)>0x²=4-y²x²+y²=2²曲线C是圆心在原点,半径为2,图像在y轴右边的半圆.
1、y=5(2x)^(1/2)y'=(5/2)(2x)^(-1/2)*(2x)'=5/√(2x)平行则切线斜率=25/√(2x)=2x=25/8y=25/2所以是8x-4y+25=02、设切点(a,5
∵点P处曲线的切线方程与y=-2x+3垂直∴可设该切线方程为y=1/2x+a假设点P存在则方程组y=2√x+1{有且只有一个根y=1/2x+a将方程组消元得1/4x^2+(a-4)x+a^2-4=0因
y'=3x^2+3此切线斜率k=15所以y'=15时x=2orx=-2所以切点为(2,14),(-2,-14)所以方程为y-14=15(x-2)ory+14=15(x+2)方法1:方程与曲线有一个焦点
y'=3x^2+6x+4=3(x+1)^2+1>=1导数是切线斜率所以k>=1所以π/4
x²+(y-2)²=3∴x=√3cosA,y=2+√3sinA∴2x+y=2√3cosA+2+√3sinA=√15sin(A+∅)+2∴最大值是√15+2令2x+y=t
一、(1)曲线的斜率方程为y=4x,所以过P点的切线的斜率为K=4*2=8(2)切线方程设为y=8x+t,带入(2.,11),得t=-5,所以切线方程为y=8x-5二、做法同上,在x=π/3处的斜率方
f′(x)=1-1/x²f′(2)=1-1/2²=3/4所以,A点斜率为3/4(2)切线方程为:y-5/2=(3/4)(x-2)y=(3/4)x+1
①解:设所求的切线过曲线y=5x^1/2上的x0点由y=5x^1/2求导得出所求切线的斜率y│x=x0=5/(2根号x0)所求的切线与直线y=2x-4平行的斜率是25/(2根号x0)=2得x0=25/
由于斜率为dy/dx=-y/(x+y)所以dx/dy=-(x+y)/y=-1-x/y推出dx/dy+x/y=-1.用一阶微分线性方程公式得出x=-y/2+c/y,讲(1,2)代入,得出C=4,最后化简
x=-2+cosα,y=sinαcosα=x+2,sinα=y(cosα)^2+(sinα)^2=(x+2)^2+y^2=1所以,曲线C是以(-2,0)为圆心,1为半径的圆设y/x=k,则y=kx是过
这就是一直线,再空间中把直线也叫曲线,因为再未知的情况下都叫曲线,即使结果是直线,就象我们在写东西的时候,不知道他是男的还是女的,就写成"他"一样
y'=5/2(x)^(-1/2)与y=2x-4平行,所以可得:y'=2即:5/2(x)^(-1/2)=2解得:x=25/16y=5(25/16)^(1/2)=25/4所以可得切线方程为:y=2(x-2
由y=x2+2,得:x2=y-2,x=±y−2.所以,y=x2+2(x≥0)与y=x−2互为反函数.它们的图象关于y=x对称.P在曲线y=x2+2上,点Q在曲线y=x−2上,设P(x,x2),Q(x,
因为y=√x在P(2,√2)处连续可导,且其导数y‘=1/(2√x)在P(2,√2)处连续,所以曲线y=√x在点P处有切线,切线方程为y-y0=y'(x=x0)*(x-x0)=>y-2=1/(2√2)
1.曲线C经过点P;2.曲线C经过点P.
f(x)的导数也就是斜率已知,那么f(x)=(1/3)x^3-x^2+c,又因为过点(0,1)则f(x)=(1/3)x^3-x^2+1
y=5√xf'(x)=5/(2√x)平行时,f"(x)=2x=25/16f(x)=25/4切线为y-25/4=2(x-25/16)设切点(t,f(t))切线为y-5√t=5/(2√t)(x-t)代入(
y'=2-2xy'(2)=2-4=-2切线为y=-2(x-2)即y=-2x+4再问:详细点可以?再答:y'=2-2xy'(2)=2-4=-2由点斜式,得在点(2,0)处的切线方程为y=-2(x-2)+
曲线和切线和x=0,x=2所围成的面积最小,即切线与x=0,x=2所围成的面积最小切线设为y=kx+b,与y=sqrt(x)联立得到关于y的一元二次方程,方程有重根时得到:kb=1/4(1)切线与x=