已知曲线Y=f(x)过点(0,0)且在点(x,y)处的斜率为k=3x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:59:51
设P(s,s+a/s),A(t,t), 则B(0,s+s/a)不妨设P在第一象限∵PA⊥l∴kPA=(s+a/s-t)/(s-t)=-1∴s+a/s-t=t-s∴t-s=a/(2s)由三角形
f'(1)=limf(1+x)-f(1)/x=limf(1-x)-f(1)/(-x)=limf(1)-f(1-x)/x=-1故曲线y=f(x)上点(1,f(1))处的切线的斜率是-1
对f(x)=x³-3x求导就是f'(x)=3x²-3过点p(2,-6)作曲线y=f(x)的切线,设切点为(a,a³-3a),则有:切线:y=(3a³-3)(x-
f(x)=∫xln(1+x^2)dx=1/2∫ln(1+x^2)d(1+x^2)=1/2*(1+x^2)[ln(1+x^2)-1]+C(C为积分常数)f(x)过点(0,-1/2),以此点代入上式得,C
由题意可知f(x)的导数方程为2x-1故设f(x)=x^2-x+C又因曲线过点(0,1)代入求得f(x)=x^2-x+1
三次的曲线或超越函数(如lnx、e^x等)的切线,一般都是导数来求的,但要注意,在求切线过程中,切点是最重要的.本题可以设切点坐标为P(a,b),则切线的斜率k=f'(a)=3a^2-3=直线PA的斜
f'(x)=2x+3e^xf(x)=∫[2x+3e^x]dx=x^2+3e^x+Cy=f(x)过点(0,1)所以,1=0+3+cc=-2故f(x)=x^2+3e^x-2
证明:1,已知点p均在两曲线上,故f(x,y)=0,g(x,y)=0,因为g(x,y)=0所以λg(x,y)=0所以f(x,y)+λg(x,y)=02,x=-y-2代入方程1得-2y-4-3y-3=0
可看出点A不在曲线上,所以设切点坐标(x0,x0^3-3x0)∵f(x)=X^3-3X,∴f'(x)=3x^2-3∴切线斜率k=3x0^2-3∴切线方程y-x0^3+3x0=(3x0^2-3)(x-x
切线的斜率为2x,即f'(x)=2x所以f(x)=x²+C其中C是常数过(1,2)所以2=1²+CC=1f(x)=x²+1
1、点(1,0)在曲线y=f(x)=x^3-x上,对函数f(x)求导有f'(x)=3x^2-1,因此f'(1)=2所以曲线y=f(x)=x^3-x过点(1,0)的切线的斜率是2求得切线方程是:y=2x
由于斜率为dy/dx=-y/(x+y)所以dx/dy=-(x+y)/y=-1-x/y推出dx/dy+x/y=-1.用一阶微分线性方程公式得出x=-y/2+c/y,讲(1,2)代入,得出C=4,最后化简
不是要求x>=-2时,f(x)=-2时,F(x)=kg(x)-f(x)>=0因为0>=-2,所以必然要F(0)>=0解出来k>=1那个在k=1取到最小值,是最后分类讨论出来的结果.没有什么必然的联系.
1、f'(x)=3ax²+2bx,因点(-1,2)在曲线上,得:f(-1)=2===>>>-a+b=2------------------------------------(*)又:f(x
f(x)的导数也就是斜率已知,那么f(x)=(1/3)x^3-x^2+c,又因为过点(0,1)则f(x)=(1/3)x^3-x^2+1
y-x^3=0过(2.0,8.0)的切线为(x-2.0)(-2.0^2)+(y-8.0)=0平面曲线f(x,y)=0过(x0,y0)的切线为fx(x0,y0)(x-x0)+fy(x0,y0)(y-y0
y=x^3-x+2y'=3x^2-1当x=1的时候,y'=3-1=2.所以曲线C的切线方程为:y-2=2(x-1)即:y=2x.