已知椭圆C的离心率为e=2分之根号2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:13:25
已知椭圆C的离心率为e=2分之根号2
已知椭圆C以F1(-1,0),F2(-1,0)为焦点,离心率e根号2/2 (1)求椭圆的方程

e=c/a=√2/2,c=1,a=√2,b=1椭圆C:x^2/2+y^2=1(2)设直线y=kx+√2代入椭圆方程中得(1+2k^2)x^2+4√2kx+2=0△=(4√2k)^2-4*2*(1+2k

已知椭圆C的中心在原点,焦点在x轴上,离心率e=1/2,一个顶点的坐标为(0,根号3)

解:设椭圆方程为x^2/a`^2+y^2/b^2=1,则b=√3,a`=2,由向量AM*AN=0知,AM垂直于AN,那么M、N两点一定位于x轴两侧,假设M点位于X轴下方,坐标为(x1,y1)N点位于X

已知焦点在x轴上的椭圆C为x^2/8+y^2/b^2=1,F1F2分别是椭圆C的左右焦点,离心率e=(根号下2)/2 求

∵离心率e=c/a=√2/2a²=8∴a=2√2c=2又∵a²-b²=c²∴b²=4椭圆方程为x²/8+y²/4=1

已知椭圆C的中心在坐标原点,交点在x轴上,离心率e=2分之1,且椭圆C经过点P(2,3),过椭圆C的左交点是...

设椭圆方程是x^2/a^2+y^2/b^2=1e=c/a=1/2a=2ca^2=4c^2=4(a^2-b^2)3a^2=4b^2P(2,3)代入得:4/a^2+9/b^2=14/(4b^2/3)+9/

已知椭圆C的中心在坐标原点,左顶点A(-2,0)离心率e=1/2,F为右焦点求椭圆方程

F是右焦点,“右”字透入信息:焦点在x轴如果焦点在y轴,就不是左右焦点了,而是上焦点,下焦点

已知椭圆E的两个焦点分别为F1(-1,0),F2(1,0),它的离心率e=2分之1.求椭圆E的方程

椭圆中、由已知c=1、e=a/c=1/2、得a=2、易得b=根号3、则椭圆方程为、(x^2)/4+(y^2)/3=1

已知椭圆5分之x^2 + m分之y^2=1离心率e为5分之根号10 求m的值

x^2/5+y^2/m=1当m>5时,焦点在y轴a²=m,b²=5,c²=a²-b²=m-5∵e=√10/5∴e²=c²/a

已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为e=√3/2,且过点(√3,1/2).(1)求椭圆C的标准

(1)、解得:a=2,b=1,椭圆方程:x2/4+y2=1(2)、因为L垂直坐标轴,所以,Ya=-Yb=r或Xa=-Xb=r,假设L垂直x轴,那么A点坐标(Xa,Ya)可化为(r,r),带入方程求得:

已知椭圆C的离心率e=√6/3,一条准线方程为x=3√2/2

由——椭圆C的离心率e=√6/3,一条准线方程为x=3√2/2可得到:a=√3,b=1,c=√2∴x²/3-y²=1解方程组-椭圆与过原点的直线方程y=kx{x²/3-y

已知椭圆的对称轴为坐标轴,离心率e=2/3,短轴长为8根号下五

求方程吗?e²=(c/a)²=c²/a²=(a²-b²)/a²=1-b²/a²=4/9∴b²/a&s

6题已知椭圆C:方程略(a>b>0)的左右焦点为F1,F2,离心率e=跟号2/2,且椭圆C过抛物线X平方=-4y的焦点1

焦点坐标(0,-1),b=1,由离心率e=跟号2/2知道a=跟号2,c=1椭圆C的标准方程为x^2/2+y^2=1

已知椭圆C的中心在原点焦点在x轴上离心率e=1/2一个顶点的坐标为(0,根号3)

(1)因为焦点在x轴上、中心在原点,可设椭圆方程形式为(x²/a²)+(y²/b²)=1;题目所给顶点(0,√3)位于y轴上,因此短半轴b=√3;由离心率e=c

已知椭圆C的中心在坐标原点,左顶点A(-2,0),离心率e=1/2,F为右焦点,斜率K的直线过点F,交椭圆C于P.O两点

F是左焦点还是右焦点再答:哦知道了再答:y=x-1或者y=-x+1再问:F是右焦点,求过程再问:K是怎么算的再答:设y=k(x-1)带入椭圆方程中,算了,已经有人给你发图了,你看看,不会的再问我吧再答

已知椭圆C的中心在坐标原点,左顶点A(-2,0),离心率e=1/2,F为右焦点,过焦点F的直线交椭圆C于P,Q两点,当P

点击放大图片如果您认可我的回答,请选为满意答案,并点击好评,谢谢!

已知椭圆C:x²/a²+y²/b²=1的离心率e=2分之根号2左右焦点分别为F1

(1)由y^2=4√2x,得2p=4√2,p=2√2.F(p/2,0)--->F(√2,0).设椭圆方程为:x^2/a^2+y^2/b^2=1.由题设得a=√2.又知:e=c/a=√2/2,c=1.b

已知椭圆E的焦点在轴上,长轴长为4,离心率为2分之根号3求椭圆E的标准方程?

设,焦点在X轴上,a=4,e=c/a=√3/2,c=2√3,b^2=a^2-c^2=16-12=4.椭圆E的标准方程为:x^2/16+y^2/4=1.

已知椭圆C:A平方分之X平方+B平方之Y平方=1(A大于B大于0)的离心率为2分之根号3短轴端点到焦点的距离为2,求椭圆

x^2/a^2+y^2/b^2=1e=c/a=3^(1/2)/23a^2=4c^2,b^2=c^2短轴端点到焦点的距离为:[b^2+c^2]^(1/2)=a=2a^2=4,b^2=c^2=3x^2/4

已知椭圆的一个焦点F1(0,-2根号2)对应的准线方程为y=-4分之9根号2,且离心率e满足:

依题意e=2√2/3.∵a^2/c-c=9√2/4-2√2=√2/4,又e=2√2/3∴a=3,c=2√2,b=1,又F1(0,-2√2),对应的准线方程为y=-9√2/4.∴椭圆中心在原点,所求方程