已知椭圆x2 a2 y2 b2=1的离心率为根号3 3以原点为圆心
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:02:45
c=1,设椭圆方程为x^2/(b^2+1)+y^2/b^2=1,把y=x-√3代入上式得b^2x^2+(b^2+1)(x^2-2√3x+3)=b^4+b^2,(2b^2+1)x^2-2√3(b^2+1
a=5,b=4按定义,|PF1|+|PF2|=2a=10
由题意知双曲线的焦点在x轴上.椭圆的一个焦点为(1,0),椭圆实轴上的一个顶点为(2,0),所以设双曲线方程为x2a2-y2b2=1,则a=1,c=2,所以双曲线的离心率为e=ca=2.故选C.再问:
以线段MN为直径的圆恒经过椭圆的焦点.不妨以右焦点F2(3,0)为例说明.设P(5cosa,4sina),A1(-5,0),A2(5,0)右准线的方程X=25/3A1P的方程为y=(4sina/(5c
x²/4+y²=1a²=4a=2b²=1c²=4-1=3c=√3e=c/a=√3/2焦点是(√3,0)和(-√3,0)F2(√3,0)AB⊥x轴A,B
因为9>4所以椭圆的焦点在x轴上横坐标的平方为9-4=5所以焦点为(根号5,0),(负根号5,0)焦距为2*根号5
答案为:1这一题只要你学了焦半径就很简单.首先e=椭圆上一点倒左(右)焦点的距离/这一点到左(右)准线的距离(这就是焦半径的公式).所以你设P(x,y)所以:绝对值PF1=a+ex绝对值PF2=a-e
1)设F2为另一焦点,易知y轴将线段|AB|,|FF2|垂直平分根据对称性,可知AFF1B四点构成等腰梯形,对角线相等,有AF1=BF,所以AF+BF=AF+AF1=2a,为定值2)由已知A(-a,0
(1)a=2c,a²=b²+c²,所以x²/4c²+y²/3c²=1,代入P得c=1,所以方程为x²/4+y²
椭圆周长公式无法表示为初等函数,只有近似计算公式(有很多,给一个简单的):C≈π(3a+3b-√[(3a+b)(a+3b)])题目中a=√20,b=√13代入计算得到:C≈25.449873
一:已知椭圆(X^2/2)+y^2=1.1.过椭圆的左焦点F引椭圆的割线求截得的弦的中点P的轨迹方程.2.求斜率为2的平行弦的中点Q的轨迹方程左焦点F(-1,0)过椭圆的左焦点F引椭圆的割线y=k(x
解题思路:椭圆解题过程:见附件最终答案:略
此椭圆焦点在Y轴上,且C=2,又有题意及椭圆的第一定义可求椭圆的长轴长2a=根号[(-3/2)^2+(5/2+2)^2]+根号[(-3/2)^2+(5/2-2)^2]=2根号10,即a=更号10,故可
分析:设直线OQ的斜率为k,则其方程为y=kx,设点Q的坐标为(x0,y0),与椭圆方程联立,x0²=a²b²/(k²a²+b²),根据|A
设y=2x+b,代入椭圆方程得X^2\2+(2x+b)^2=1,整理后得9x^2+8bx+2b^2-2=0,因为相切,所以△=0,即64b^2-4*9*(2b^2-2)=0,解得b^2=9,b=±3,
/>给你个公式吧.设PF1=m,PF2=n那么m+n=2a2S=mnsinA而根据余弦定理:cosA=(m^2+n^2-4c^2)/2mn=[(m+n)^2-4c^2-2mn]/2mn=(2b^2/m
=√3,c^2=9-4=5=a^2-b^2=a^2-3,所以a=2√2,故椭圆的标准方程是x^2/3+y^2/8=1
两焦点为F1(-1,0),F2(1,0),所以,c=12|F1F2|=|PF1|+|PF2|=2a所以,a=2c=2b^2=a^2-c^2=4-1=3椭圆方程:x^2/4+y^2/3=1PF1的斜率=
PF1+PF2=2F1F2由椭圆定义PF1+PF2=2aF1F2=2c所以2a=4c显然c=1所以a=2b^2=a^2-c^2=3焦点在x轴所以x^2/4+y^2/3=1