已知椭圆x2 m 1 y2=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:49:24
已知椭圆x2 m 1 y2=1
已知椭圆C1:x2 a2 + y2 b2 =1(a>b>0)椭圆C2

离心率定义是c/a,也就是(根号(a²-b²))/a,这个东西等于根3/2,也就是说a/b=2.这样第一问就很简单了.第二问应该就是暴力解方程.我看不出什么巧妙的几何解法.把M和P

(高二数学椭圆)已知直线y=-x+1与椭圆相交于A,B两点

缺了条件,焦点应该在x轴上.(1)离心率e=c/a=√3/3=1/√3∵c=1,∴a=√3∴b=√2∴方程为x²/3+y²/2=1(2)设A(x1,y1),B(x2,y2)将y=-

已知两个椭圆的两个焦点F1(-1,0),F2(1,0),且椭圆与直线y=x-根号3相切,求椭圆的方程

c=1,设椭圆方程为x^2/(b^2+1)+y^2/b^2=1,把y=x-√3代入上式得b^2x^2+(b^2+1)(x^2-2√3x+3)=b^4+b^2,(2b^2+1)x^2-2√3(b^2+1

已知椭圆方程x24+y23=1,双曲线的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率为(  )

由题意知双曲线的焦点在x轴上.椭圆的一个焦点为(1,0),椭圆实轴上的一个顶点为(2,0),所以设双曲线方程为x2a2-y2b2=1,则a=1,c=2,所以双曲线的离心率为e=ca=2.故选C.再问:

已知直线l:y=kx+1与椭圆x

设直线l与椭圆的交点坐标为M(x1,y1),N(x2,y2),由y=kx+1x22+y2=1消去y得(1+2k2)x2+4kx=0,所以x1+x2=−4k1+2k2,x1x2=0,由|MN|=423,

已知椭圆x^2/25+y^2/9=1 P是椭圆上一点

1、就是先设所求点位(x,y),然后找出x,y与已知方程对应曲线点A的关系(将其上的点用x.y表示),然后将对应点A的x,y表示的坐标带入方程化简后x,y的函数关系就是所求点的轨迹可设M(x,y),则

已知椭圆方程x2\a2+y2\b2=1(a>b>0),设F为椭圆的一个焦点,P是椭圆上的一点

1)设F2为另一焦点,易知y轴将线段|AB|,|FF2|垂直平分根据对称性,可知AFF1B四点构成等腰梯形,对角线相等,有AF1=BF,所以AF+BF=AF+AF1=2a,为定值2)由已知A(-a,0

已知椭圆x2/a2+y2/b2=1的长半轴长等于焦距,点p(根号3,根号3/2)在椭圆上,(1)求椭圆方程

(1)a=2c,a²=b²+c²,所以x²/4c²+y²/3c²=1,代入P得c=1,所以方程为x²/4+y²

已知椭圆公式 求周长椭圆公式为 (x^2)/20+(y^2)/13=1,求椭圆的周长.(得到近似值即可)

椭圆周长公式无法表示为初等函数,只有近似计算公式(有很多,给一个简单的):C≈π(3a+3b-√[(3a+b)(a+3b)])题目中a=√20,b=√13代入计算得到:C≈25.449873

已知椭圆C1:X2a2+y2b2=1(a>b>0

解题思路:主要考查你对椭圆的性质(顶点、范围、对称性、离心率),圆锥曲线综合等考点的理解。解题过程:

已知椭圆x²/2+y²=1,求过椭圆左焦点f引椭圆的割线,求截得弦中点p的轨迹方程

一:已知椭圆(X^2/2)+y^2=1.1.过椭圆的左焦点F引椭圆的割线求截得的弦的中点P的轨迹方程.2.求斜率为2的平行弦的中点Q的轨迹方程左焦点F(-1,0)过椭圆的左焦点F引椭圆的割线y=k(x

已知椭圆与双曲线y^2-x^2=1有相同焦点,且椭圆经过点(-3/2,5/2),求椭圆的标准方程

此椭圆焦点在Y轴上,且C=2,又有题意及椭圆的第一定义可求椭圆的长轴长2a=根号[(-3/2)^2+(5/2+2)^2]+根号[(-3/2)^2+(5/2-2)^2]=2根号10,即a=更号10,故可

关于椭圆,圆锥曲线的已知椭圆x^2/a^2+y^2/b^2=1(a>b>0).已知椭圆的离心率为√6/4,A为椭圆的左顶

分析:设直线OQ的斜率为k,则其方程为y=kx,设点Q的坐标为(x0,y0),与椭圆方程联立,x0²=a²b²/(k²a²+b²),根据|A

已知椭圆X2\2+y2=1,求椭圆斜率为2的切线方程

设y=2x+b,代入椭圆方程得X^2\2+(2x+b)^2=1,整理后得9x^2+8bx+2b^2-2=0,因为相切,所以△=0,即64b^2-4*9*(2b^2-2)=0,解得b^2=9,b=±3,

已知椭圆过点(根号3,0)且与椭圆(x^2/4)+(y^2/9)=1的焦点相同,则这个椭圆的标准方程

=√3,c^2=9-4=5=a^2-b^2=a^2-3,所以a=2√2,故椭圆的标准方程是x^2/3+y^2/8=1

已知命题p:“直线y=kx+1椭圆x

∵直线y=kx+1恒过定点A(0,1)要使得直线y=kx+1与椭圆x25+y2a=1恒有公共点则只要点A在椭圆x25+y2a=1内或椭圆上即可方程x25+y2a=1表示椭圆可得a>0且a≠5∴1a≤&

已知椭圆的两焦点为F1(-1,0),F2(1,0),P为椭圆上的一点,且有2|F1F2|=|PF1|+|PF2|求椭圆的

两焦点为F1(-1,0),F2(1,0),所以,c=12|F1F2|=|PF1|+|PF2|=2a所以,a=2c=2b^2=a^2-c^2=4-1=3椭圆方程:x^2/4+y^2/3=1PF1的斜率=

已知椭圆的两焦点为F1(-1,0),F2(1,0),P为椭圆上一点,且2F1F2=PF1 PF2 求椭圆的方程

PF1+PF2=2F1F2由椭圆定义PF1+PF2=2aF1F2=2c所以2a=4c显然c=1所以a=2b^2=a^2-c^2=3焦点在x轴所以x^2/4+y^2/3=1