已知正数a,b满足2b ab a=30,求 最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:23:01
由题知:b+d=x,c+d=y,x+y=b+c+2d,其它为:a+b=23a+c=26a+d=29b+c=93由上得:b=23-ac=26-ad=29-a则b+c=23-a+26-a=49-2a=93
y=1/a+1/b=(a+b)/a+(a+b)/b=1+b/a+a/b+1>=2+2根号(b/a*a/b),(a,b>0)=2+2=4即Y最小值是:4,当b/a=a/b,即a=b=1/2时,取"="
1=a+b得ab=2ab=1因为ab不等于1设f(x)=X+1/X,则在(0,1]设0
由题意的a/2+b=1由柯西不等式得(1/a+1/b)(a/2+b)≥(1/√a×√(a/2)+1/√b×√b)^2=(√2/2+1)^2=(3+2√2)/2故原式的取值范围为【3+2√2/2,+无穷
用到一个不等式ab=2√2-2而a+b=1-a
(a^3+b^3+b/a+a/b)/4>=[(a^3)*(b^3)*(b/a)*(a/b)]的四次方根=1所以a^3+b^3+b/a+a/b>=4,等号当且仅当a=b=1时成立.
a²+b²-(a+b)=a²+b²+2ab-(a+b)-2ab=(a+b)²-(a+b)-2=(a+b-2)(a+b+1)a、b均为正,由均值不等式得
∵a^2+ab-ac-bc=0a(a+b)-c(a+b)=0(a+b)(a-c)=0∵(a+b)>0a-c=0∴a=c
因为2a+b=(2a+b)(1/a+2/b)=4+b/a+4a/b≥4+2√(b/a)(4a/b)=4+4=8,所以4a^2+b^2≥(2a+b)^2/2≥32..
∵正数a.b满足4a+b=30,∴1a+1b=130(4a+b)(1a+1b)=130(5+ba+4ab)≥130•(5+2ba•4ab)=0.3,当且仅当ba=4ab,即a=5,b=10时,1a+1
2b+a≥2√(2ab)ab+2√(2ab)≤302√(2ab)≤30-ab(ab)²-68ab+900≥0ab≥50(舍去)或ab≤18(当且仅当2b=a时取等号)故有1/(ab)的最小值
(3a+2)+(3b+2)+(3c+2)=9设3a+2=x,3b+2=y,3c+2=z,x+y+z=9,(x+y+z)乘[(1/x)+(1/y)+(1+z)]=1+1+1+(y/x+x/y)+(z/y
先将a转化成b的函数,得a=(2*b+5/2)/(b-1),代入a+2b.接着就是求2(b-1)+4+(9/2)/(b-1)的取值范围.注意此时a不为0.后面你懂的
2a²+3b²=92a²+(3+3b²)=12由均值不等式得2a²+(3+3b²)≥2√[2a²(3+3b²)]12≥2
不可以因为ab取不到1先在前面由均值不等式算出ab的取值范围再用勾型函数图像求最小值哦
1=a+b得ab=2ab=1因为ab不等于1设f(x)=X+1/X,则在(0,1]设0
a^4b^5/ab^2=6/3a^3b^3=2a^7b^8=a^6b^6xab^2=(a^3b^3)^2xab^2=2^2x3=12手机提问的朋友在客户端右上角评价点【满意】即可.
令a=x(0
2a²=b²=3∴a=√3/2=(√6)/2a√(b²+1)=[(√6)/2]×√(3+1)=[(√6)/2]×2=√6
(1)∵a,b>0,∴2=a+b≥2ab,解得0<ab≤1.∴ab的取值范围是(0,1];(2)由(1)可知:ab∈(0,1],令ab=t,则4t+1t≥24t•1t=4,当且仅当t=12时取等号,∴