已知正方形ABCD的边长a,点E是CD的中点,延长BC至点F,使CF=CE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:41:04
已知正方形ABCD的边长a,点E是CD的中点,延长BC至点F,使CF=CE
已知正方形abcd 的边长为4,将正方形abcd置于平面直角坐标系中,使点a与坐标系的原点重合,ab与x轴正半轴

两组解当abcd从x轴顺时针旋转30°时,b(2*根号3,2),c(2-2*根号3,2+2*根号3),d(-2,2*根号3)当abcd从x轴逆时针旋转30°时,b(-2*根号3,2),c(2+2*根号

已知正方形ABCD的边长是1、E是CD边上的中点,P为正方形ABCD边上的一个动点,动点P从A点出发,沿A-B-C-D运

x∈[0,1]时,y=1/2xx∈(1,2]时,y=3/4-1/2(x-1)-1/4(2-x)x∈(2,2.5]时,y=1/2(5/2-x)把y=1/3分别代入三式,解得x=2/3

如图,已知正方形ABCD的边长为4,对称中心为点P,

再问:对称中心是什么?再答:

已知正方形ABCD内一点P到A,B,C三点的距离之和的最小为根号2+根号6,求此正方形的边长

当点P处在对角线BC上,且角PAB=角PCB=15度时,三距离之和最小,设正方形边长为a,则正方形对角线=√2*a,对角线的一半=(√2)/2*a.则P到正方形中心的距离==(√2)/2*a*tan3

已知,在边长为6的正方形ABCD的两侧如图作正方形BEFG、正方形DMNK,恰好使得N、A、F三点在一直线上,连接MF交

(1)∵四边形BEFG、DMNK、ABCD是正方形,∴∠E=∠K=90°,AE∥MC,MC∥NK,∴AE∥NK,∴∠KNA=∠EAF,∴△KNA∽△EAF,∴NKEA=KAEF,即yx+6=y−6x,

一道初二上册的函数题已知正方形ABCD的边长是1.,E是CD的中点,P是正方形ABCD上一个动点,动点P从A点出发,沿A

首先,运动路程应该是A-B-C-D-E吧.若真是这样,那就麻烦了函数y是一个分段函数(也就是说当x取不同的定义域即x取值范围不同时,其函数解析式不同)下面来讨论一下:①0

已知在边长为12的正方形ABCD中有两个动点P,Q同?

PC=QD,AQ=PB,12-3t=t,t=3,AQ=3,AP=9,PB=3QA=DP,t=12*3-3t,t=9S-PQC=36,PC=6,t=10,Q在AB上,P在DC上,PC=6,QB=2,或假

已知正方形ABCD的边长为2,点P为对角线AC上一点,则(.AP

以A为坐标原点,以AB为X轴正方向,以AD为Y轴正方向建立直角坐标系,则A(0,0),B(2,0),C(2,2),D(0,2),∵P点有对角线AC上,设P(x,x),0<x<2所以.AP=(x,x),

已知(如图):正方形ABCD的边长为b,正方形DEFG的边长为a.

(1)梯形ADGF的面积=12(GF+AD)×GD=12(a+b)•a=a(a+b)2(2)三角形AEF的面积=12×AE•EF=a(b-a)2(3)三角形AFC的面积=S□ABCD+S□AFGD-S

已知正方形ABCD的边长是1,E为CD边的中点,P为正方形ABCD边上的一个动点,动点P从A点出发,沿A→B→C→E运动

当动点P在A---B间运动时,如图(1) ∵ABCD是边长为1的正方形 ∴ △APE的高是1 而AP=x ,△APE的面积为y ∴ 

如图,已知正方形ABCD的边长为10cm,点E在AB边

(1)1.在△BEP,△CQP中∠B=∠C,BE=CP=6,BP=CQ=4△BEP≌△CQP2.若要△BEP≌△CQP除1之外的情况,则只有BE=CQ=6,BP=CP=5才成立设Q的运动速度为x,则C

如图,正方形ABCD与正方形BEFG,点C在边BG上,已知正方形ABCD的边长为a,正方形BEFG的边长为b,用a,b表

(1)根据题意得:△CDE的面积为12a2;(2)根据题意得:△CDG的面积为12a(b-a)=12ab-12a2;(3)根据题意得:△CGE的面积为12b(b-a)=12b2-12ab;(4)根据题

如图,已知正方形abcd的边长为2,动点p在正方形abcd的边ab或bc上,它从a点出发,沿a→b→c运动.当点p经过的

当P在边AB上时,△APC的面积=1/2,则高BC=2,所以底边AP=1/2当P在边BC上时,△APC的面积=1/2,则高AB=2,所以底边PC=1/2.所以AP=4-1/2=7/2

已知正方形ABCD的边长为2 点M是BC的中点

(1)四边形CDFP的周长=6,因为AF=FE,PE=PM,所以四边形周长即为AD+DC+CB=6.(2)连接OE、OF、OP,根据三角形AOF与三角形EOF全等、三角形EOP与三角形BOP全等可知,

如图,已知正方形ABCD与正方形AEFG,点F在边AD上,正方形ABCD的边长为a,正方形AEFG的边长为b.用a、b表

解法一延长GF和CD交于HS长方形BCHG=a(a+b)S△HDF=b(a-b)/2S△FGB=b(a+b)/2S△BCD=aa/2S△DBF=S长方形BCHG-S△HDF-S△FGB-S△BCD=a

已知正方形ABCD的边长为1,线段EF//平面ABCD,点E,F在平面ABCD内正投影分别是A,B,且EF到平面ABCD

(1)连接BD由题意得∵EF平行于平面ABCD,平面EFBA交平面ABCD=AB,AB在平面EFBA上∴EA平行FB.EA平行于平面FBD∴∠BFD或其补角为EA与FD所成的角FB=√6/3BD=√2

已知点P是边长为8的正方形ABCD所在 平面外的一点,

取Q∈AB使AQ=3QB则QM=6QN=2∠MQN=∠PBC=60º对⊿MQN用余弦定理MN=2√7再问:请问:如何得出QM=6,QN=2?再答:相似三角形对应边成比例。

如图,正方形ABCD与正方形BEFG,点C在边BG上,已知正方形ABCD的边长为a,正方形的边长为b.用a、b表示下列面

因为AE平行于CD,所以E到CD的距离等于A到CD的距离,即a所以三角形CDE的面积等于1/2CD乘高,即1/2a*a三角形DEG的面积等于三角形CDE+CDG+CEG的面积和三角行CDG的面积等于1