已知正方形abcd的边长为a,PA垂直
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:51:39
1.S=(FG+AD)*DG/2=(a+b)*a/22.S=(AD-DE)*FE/2=(b-a)*a/23.把左上角缺掉的那一块补满,变成一个变长分别是b和a+b的长方形然后所要求的小三角行的面积就是
两组解当abcd从x轴顺时针旋转30°时,b(2*根号3,2),c(2-2*根号3,2+2*根号3),d(-2,2*根号3)当abcd从x轴逆时针旋转30°时,b(-2*根号3,2),c(2+2*根号
解题思路:利用等腰三角形性质解题过程:见附件最终答案:略
由正方形得出边为根号24厘米,该题阴影部分面积是圆面积的1/4,由圆面积公式可得:阴影面积=1/4πR^2=1/4×π×√24^2=6π=18.84平方厘米
中间面积为a正方形边长为X,又AB=CD,∴2X+10=3X+2X=8,X+6=14d-中间=14×14-4=192.即最大正方形与最小正方形的面积之差=196-4=192.
∵四边形ABCD与四边形EFGH是正方形,∴∠A=∠D=∠FEH=90°,EF=EH,∴∠AEF+∠DEH=90°,∠AEF+∠AFE=90°,∴∠DEH=∠AFE,在△AEF和△DHE中,EH=EF
(1)∵四边形BEFG、DMNK、ABCD是正方形,∴∠E=∠K=90°,AE∥MC,MC∥NK,∴AE∥NK,∴∠KNA=∠EAF,∴△KNA∽△EAF,∴NKEA=KAEF,即yx+6=y−6x,
寒樱暖暖为你先设,正方形的边长为A则阴影部分面积为:2×1/4×3.14×A^2所以正方形的面积为:A^2=4÷(2×1/4×3.14)=4÷1.57约=2.55厘米正方形的边长为:A=√2.55约=
连接切点E和圆心O,延长OE交AB于F,连接OA ∵EF⊥CD ∴EF=AD=2 设圆
(1)梯形ADGF的面积=12(GF+AD)×GD=12(a+b)•a=a(a+b)2(2)三角形AEF的面积=12×AE•EF=a(b-a)2(3)三角形AFC的面积=S□ABCD+S□AFGD-S
(1)根据题意得:△CDE的面积为12a2;(2)根据题意得:△CDG的面积为12a(b-a)=12ab-12a2;(3)根据题意得:△CGE的面积为12b(b-a)=12b2-12ab;(4)根据题
有的..因为面积四等分..设AE在AC中最短AF其次AG最长,AE=b,AF=c,AG=d面积四等分则b平方=(1/4)a平方c平方-b平方=(1/4)a平方即:c平方=(1/2)a平方d平方-c平方
(1)AC1=AA1+A1B1+B1C1平方得,AC1^2=b^2+2a^2+2(-1/2*ab*2)=b^2+2a^2-2ab,再开方即得AC1的长(2)AC=AB+BC,D1B=D1A+A1B1+
设小正方形的x则面积S1=(1/2)*4a*(4a-x)=8a²-2ax面积S2=(1/2)*x²=(1/2)x²面积S2=(1/2)*4a*(4a+x)=8a²
ab中点设为e圆心到直线ab的距离oe=2-r直角三角形aoe中ae=2/2=1,oe=(2-r),斜边ao=r所以1^2+(2-r)^2=r^2则r=4/5
解法一延长GF和CD交于HS长方形BCHG=a(a+b)S△HDF=b(a-b)/2S△FGB=b(a+b)/2S△BCD=aa/2S△DBF=S长方形BCHG-S△HDF-S△FGB-S△BCD=a
(1)连接BD由题意得∵EF平行于平面ABCD,平面EFBA交平面ABCD=AB,AB在平面EFBA上∴EA平行FB.EA平行于平面FBD∴∠BFD或其补角为EA与FD所成的角FB=√6/3BD=√2
左边梯形ABCG面积为3/4a^2右边三角形GCE面积1/8a^2三角形ABE面积3/4a^2所以,阴影面积为1/8a^2
因为AE平行于CD,所以E到CD的距离等于A到CD的距离,即a所以三角形CDE的面积等于1/2CD乘高,即1/2a*a三角形DEG的面积等于三角形CDE+CDG+CEG的面积和三角行CDG的面积等于1