已知正项数列 2sn=an 1 an 用数学归纳法证明an=根号n-根号n-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:19:33
已知正项数列 2sn=an 1 an 用数学归纳法证明an=根号n-根号n-1
已知数列{an}前n项和为Sn,且Sn=-2an+3

1.Sn=-2an+3有S(n-1)=-2a(n-1)+3则an=Sn-S(n-1)=-2an+2a(n-1)=>an=a(n-1)*2/3所以,{an}为共比数列,q=2/32.Sn=-2an+3有

已知数列an的首项为a1=1,前n项和为Sn,且Sn+1=2Sn+3n+1且n为正自然数,

(1)a(n+1)=2an+3.得a(n+1)+3=2(an+3)则b(n+1)=2bn等比数列(2)cn是什么处女处男?

已知sn为正项数列an的前n项和,且满足sn=1/2an^2+1/2an(1)求数列an(2)求a1,a2,a3,a4的

(1)n=1时,a1=S1=1/2*a1^2+1/2*a1,解得a1=1,当n>=2时,an=Sn-S(n-1)=1/2*an^2+1/2*an-1/2*[a(n-1)]^2-1/2*a(n-1),化

已知正项数列{an}=1,前n项和Sn满足an=根号下Sn+根号下Sn-1(n大于等于2) 求证根号下Sn为等差数列

1.n≥2时,an=Sn-S(n-1)=√Sn+√S(n-1)[√Sn+√S(n-1)][√Sn-√S(n-1)]=√Sn+√S(n-1)[√Sn+√S(n-1)][√Sn-√S(n-1)-1]=0算

已知正项数列{An}首项A1=1,前n项和Sn满足An=√Sn+√Sn-1(n≥2)求证{√Sn}为等差数列,并求An通

数列为正项数列,则Sn>0n≥2时,an=√Sn+√S(n-1)Sn-S(n-1)=√Sn+√S(n-1)[√Sn+√S(n-1)][√Sn-√S(n-1)]=√Sn+√S(n-1)√Sn-√S(n-

已知在正项数列an中sn表示前n项和且2倍根号下sn=an+1 求an

由题意得,Sn=[(an+1)/2]^2①则S(n+1)=[(a(n+1)+1)/2]^2②②-①得(结合a(n+1)=S(n+1)-Sn)a(n+1)=[(a(n+1)+1)/2]^2-[(an+1

已知数列{an}的前n项和为Sn,且满足Sn=Sn-1/2Sn-1 +1,a1=2,求证{1/Sn}是等差数列

由Sn=Sn-1/2Sn-1+1,两边同时取倒数可得1/Sn=(2Sn-1+1)/Sn-11/Sn=2+1/Sn-1即1/Sn-1/Sn-1=2故{1/Sn}是首项为1/2,公差为2的等差数列1/Sn

在正项数列【an]中,已知a3*a4=a6+a8,Sn是前n项和,且Sn=3Sn-1【n大于等于2】,求数列【an]通项

Sn=3Sn-1Sn-1=3Sn-2(n>=3)相减后:an=3an-1等比数列q=an/an-1=3所以an=a2*3^n-2(n>=3)S2=3S1即a2+a1=3a1,故a2=2a1这样通项公式

已知正项数列{an},a1^3+a2^3+a3^3++an^3=sn^2

Sn^2=a1^3+a2^3+...+an^3S(n-1)^2=a1^3+a2^3+...+a(n-1)^3相减有(Sn-S(n-1))(Sn+S(n-1)=An^3Sn+S(n-1)=An^2Sn+

已知正项数列 an 其前n项和sn满足Sn=((an+1)/2)²,求an的通项公式

Sn=(an+1)^2/4=(an^2+2an+1)/4Sn-1=[a(n-1)+1]^2=[(a(n-1)^2+2a(n-1)+1]/4Sn-Sn-1=an=[an^2+2an-a(n-1)^2-2

已知在正项数列an中,Sn表示前n项和且2根号Sn=an+1求an

∵2根号Sn=an+14Sn=(an+1)^2①4S(n-1)=[a(n-1)]^2②①-②,可得:4an=[an^2-a(n-1)^2]+2[an-a(n-1)]化简可得:2[a(n-1)+an]=

已知{an}为正项数列,其前n项和Sn满足10*Sn=an^2+5*an+6 且a1,a3,a15成等比数列,求数列{a

an=5n-310Sn=an^2+5an+610S(n+1)=a(n+1)^2+5a(n+1)+6两式相减得a(n+1)^2-an^2=5a(n+1)+5an左右同除a(n+1)+an得a(n+1)-

数列的已知各项为正的等比数列{an}的前n项为Sn,且满足a2n+an-2Sn=0,求数列{an}的通项公式

a2n+an-2Sn=0(1)a2(n-1)+a(n-1)-2S(n-1)=0(n≥2)(2)(1)-(2),得a2n+an-2Sn-a2(n-1)-a(n-1)+2S(n-1)=a2n-a2(n-1

高中数学数列题:已知各项均为正数的数列{an}的前n项和sn满足sn>1,且6sn=(an+1)(an+2),n属于正整

由a1=S1=1/6(a1+1)(a1+2),解得a1=1或a1=2,由假设a1=S1>1,因此a1=2,又由a(n+1)=S(n+1)-Sn=1/6(a(n+1)+1)(a(n+1)+2)-1/6(

已知正项数列an的前n项和为sn,且满足:an平方=2sn-an(n属于N*).求an的通项公式;2.求数列{an,2a

(An)^2=2Sn-An=>(A(n-1))^2=2S(n-1)-A(n-1)=>(An)^2-(A(n-1))^2=2Sn-An-2S(n-1)+A(n-1)=>(An+A(n-1))*(An-A

一道关于数列 已知数列{An}的前n项和为Sn,Sn=3+2An,求An

Sn-S(n-1)=2An-2A(n-1)=An所以An=2A(n-1)An/2A(n-1)=2即An为等比为2的等比数列令n=1,S1=3+2A1=A1A1=-3所以An=-3*[2^(n-1)]