已知正项数列对任意自然数都有
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:14:53
由题意得:an-a(n+1)=2[(1/n-1/(n+1)]那么a1-a2=2(1-1/2)a2-a3=2(1/2-1/3)...a(n-1)-an=2[(1/(n-1)-1/n]等式相加得:a1-a
an-a(n-1)=2n-1a(n-1)-a(n-2)=2(n-1)-1……a2-a1=2*2-1相加an-a1=2*[2+3+……+n]-1*(n-1)=2*(n+2)(n-1)/2-n=n&sup
(1)bn,√an,bn+1成等比所以an=bn*bn+1所以a1=b1*b2=3a2=b2*b3=6所以b1*(b1+d)=3(b1+d)*(b1+2d)=6解得:b1=√2d=√2/2或者b1=-
sn=p(an-1)s(n-1)=p[a(n-1)-1]sn=s(n-1)+an∴p[a(n-1)-1]+an=p(an-1)an=p/(p-1)a(n-1)故为等比数列公比为:p/(p-1)sn=p
由题意知对任意n有2S[n]=a[n]^2+a[n]同样有:2S[n-1]=a[n-1]^1+a[n-1]两式相减,得左边=2S[n]-2S[n-1]=2a[n]即2a[n]=a[n]^2+a[n]-
/>a1²=(4-1)/3=1又数列为正项数列,各项均为正,因此a1=1a1²+a2²+...+an²=(4ⁿ-1)/3(1)a1²+a2
∵an=an-1+1/n(n+1)∴an-an-1=1/n-1/(n+1)an-1-an-2=1/(n-1)-1/n………a2-a1=1-1/2上述各式相加得:an-a1=1-1/(n+1)=n/(n
a(1)=5/6,n>1时,a(n+1)=a(n)/3+(1/2)^(n+1),a(2)=a(1)/3+(1/2)^2=5/18+1/4=19/36a(n)=a(n-1)/3+(1/2)^n,a(n)
(1)∵b1/a1+b2/a2+b3/a3.bn/an=2n+1取n-1代换n得b1/a1+b2/a2.b(n-1)/a(n-1)=2n-1得bn/an=2,即bn=2*3^(n-1),(n≥2),b
1.证明:因为bn,a(n+1),b(n+1)成等比数列,所以[a(n+1)]²=bnxb(n+1)(n∈N*)a(n+1)=√[bnxb(n+1)]所以an=√[bnxb(n-1)](n≥
1、an,bn,a(n+1),所以,2bn=an+a(n+1)推出,2(bn+1)=a(n+1)+a(n+2)bn,a(n+1),b(n+1),所以,a(n+1)^2=bn*b(n+1),推出,a(n
(1)2an=n+Sn2a(n+1)=n+1+S(n+1)相减得2【a(n+1)-an】=1+a(n+1)a(n+1)=2an+1b(n+1)=a(n+1)+1=2(an+1)=2bna1=1an=2
a(1)=5/6,n>1时,a(n+1)=a(n)/3+(1/2)^(n+1),a(2)=a(1)/3+(1/2)^2=5/18+1/4=19/36a(n)=a(n-1)/3+(1/2)^n,a(n)
(1)∵对任意正整数n,有b1a1+b2a2+b3a3+┅+bnan=2n+1,①∴当n≥2时,b1a1+b2a2+b3a3+┅+bn−1an−1=2n-1,②…(4分)①-②得 bnan=
C1会求吧,(b1/a1)+(b2/a2)+(b3/a3)+...+(bn/an)=2n+1=>b(n+1)/a(n+1)=2,数列Cn是常数列,而c1=3,感觉题目有点问题(任意自然数N都满足),你
n=1时,(s1-1)^2=s1*s1即-2s1+1=0解得s1=1/2n=2时,(s2-1)^2=(s2-s1)*s2解得:s2=2/3n=3时,(s3-1)^2=(s3-s2)*s3解得:s3=3
依题意a1<a2,即1+y<4+2y,所以y﹥-3.又an=n^2+yn恒为正,所以a1>0,∴1+y>0,y>-1,综上y>-1.
q=a(n+1)/a(n)=[(n+2)*0.9^(n+1)]/[(n+1)*0.9^n]==9(n+2)/10(n+1),当n1,a(n+1)>a(n);当n=8时,9(n+2)/10(n+1)=1
第二问应该是bn=R^n/(a1a2a3……an)?(1)2R/(an-an+1)=n(n+1),an+1-an=-2R/n(n+1)=-2R[1/n-1/(n+1)],得到:a2-a1=-2R(1-