已知正项数列对任意自然数都有

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:14:53
已知正项数列对任意自然数都有
已知数列{an}中,a1=3,对任意自然数n都有2/an-a(n-1)=n(n+1),求数列{an}的通项公式

由题意得:an-a(n+1)=2[(1/n-1/(n+1)]那么a1-a2=2(1-1/2)a2-a3=2(1/2-1/3)...a(n-1)-an=2[(1/(n-1)-1/n]等式相加得:a1-a

已知数列{an},a1=1,对任意自然数N都有an=a(n-1)+2n-1,求{an}的通项公式

an-a(n-1)=2n-1a(n-1)-a(n-2)=2(n-1)-1……a2-a1=2*2-1相加an-a1=2*[2+3+……+n]-1*(n-1)=2*(n+2)(n-1)/2-n=n&sup

已知正项数列{an},{bn}满足:a1=3,a2=6,{bn}是等差数列,且对任意正整数n,都有bn,根号an,bn+

(1)bn,√an,bn+1成等比所以an=bn*bn+1所以a1=b1*b2=3a2=b2*b3=6所以b1*(b1+d)=3(b1+d)*(b1+2d)=6解得:b1=√2d=√2/2或者b1=-

已知数列{an}的前n项和为sn(p是常数,且P不等于0和1),且对任意的自然数n,总有sn=p(an-1),数列bn=

sn=p(an-1)s(n-1)=p[a(n-1)-1]sn=s(n-1)+an∴p[a(n-1)-1]+an=p(an-1)an=p/(p-1)a(n-1)故为等比数列公比为:p/(p-1)sn=p

设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n属于自然数,Sn是an2和an的等差中项

由题意知对任意n有2S[n]=a[n]^2+a[n]同样有:2S[n-1]=a[n-1]^1+a[n-1]两式相减,得左边=2S[n]-2S[n-1]=2a[n]即2a[n]=a[n]^2+a[n]-

已知正项数列{an}对任意自然数n都有a1^2+a2^+a3^2+……+an^2=(4^n-1)/3 求a1+a2+……

/>a1²=(4-1)/3=1又数列为正项数列,各项均为正,因此a1=1a1²+a2²+...+an²=(4ⁿ-1)/3(1)a1²+a2

已知数列an中,a1=1,对任意自然数n都有an=an-1+1/n(n+1),求an的通项

∵an=an-1+1/n(n+1)∴an-an-1=1/n-1/(n+1)an-1-an-2=1/(n-1)-1/n………a2-a1=1-1/2上述各式相加得:an-a1=1-1/(n+1)=n/(n

【【【【已知数列{an}中,a1=5/6,且对且对任意自然数n都有an+1=1/3an+(1/2)^(n+1)】】】】

a(1)=5/6,n>1时,a(n+1)=a(n)/3+(1/2)^(n+1),a(2)=a(1)/3+(1/2)^2=5/18+1/4=19/36a(n)=a(n-1)/3+(1/2)^n,a(n)

已知等比数列{an}的通项公式为an=3^(n-1),设数列{bn}满足对任意自然数n都有b1/a1+b2/a2+b3/

(1)∵b1/a1+b2/a2+b3/a3.bn/an=2n+1取n-1代换n得b1/a1+b2/a2.b(n-1)/a(n-1)=2n-1得bn/an=2,即bn=2*3^(n-1),(n≥2),b

已知正项数列{an}{bn}满足,对任意正整数n,都有an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列

1.证明:因为bn,a(n+1),b(n+1)成等比数列,所以[a(n+1)]²=bnxb(n+1)(n∈N*)a(n+1)=√[bnxb(n+1)]所以an=√[bnxb(n-1)](n≥

已知正项数列{an},{bn}满足:对任意正整数n,都有an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+

1、an,bn,a(n+1),所以,2bn=an+a(n+1)推出,2(bn+1)=a(n+1)+a(n+2)bn,a(n+1),b(n+1),所以,a(n+1)^2=bn*b(n+1),推出,a(n

已知数列{an}的前n项和为Sn,且对任意正整数n都有an是n与Sn的等差中项.

(1)2an=n+Sn2a(n+1)=n+1+S(n+1)相减得2【a(n+1)-an】=1+a(n+1)a(n+1)=2an+1b(n+1)=a(n+1)+1=2(an+1)=2bna1=1an=2

已知数列{an}中,a1=5/6,且对且对任意自然数n都有an+1=1/3an+(1/2)^(n+1)数列{bn}对任意

a(1)=5/6,n>1时,a(n+1)=a(n)/3+(1/2)^(n+1),a(2)=a(1)/3+(1/2)^2=5/18+1/4=19/36a(n)=a(n-1)/3+(1/2)^n,a(n)

已知等比数列{an}的通项公式为an=3n-1,设数列{bn}满足对任意自然数n都有b1a1+b2a2+b3a3+┅+b

(1)∵对任意正整数n,有b1a1+b2a2+b3a3+┅+bnan=2n+1,①∴当n≥2时,b1a1+b2a2+b3a3+┅+bn−1an−1=2n-1,②…(4分)①-②得 bnan=

已知等比数列{an}的通项公式为a=3^(n-1),设数列{bn}满足对任意自然数N都有(b1/a1)+(b2/a2)+

C1会求吧,(b1/a1)+(b2/a2)+(b3/a3)+...+(bn/an)=2n+1=>b(n+1)/a(n+1)=2,数列Cn是常数列,而c1=3,感觉题目有点问题(任意自然数N都满足),你

设数列{an}的前n项和为Sn,且对任意的自然数n都有(Sn-1)^2=anSn

n=1时,(s1-1)^2=s1*s1即-2s1+1=0解得s1=1/2n=2时,(s2-1)^2=(s2-s1)*s2解得:s2=2/3n=3时,(s3-1)^2=(s3-s2)*s3解得:s3=3

已知{an}为递增数列,且对任意n属于N*都有an=n^2+yn恒为正,则实数y的取值范围是

依题意a1<a2,即1+y<4+2y,所以y﹥-3.又an=n^2+yn恒为正,所以a1>0,∴1+y>0,y>-1,综上y>-1.

数列an的通项公式an=(n+1)*0.9^n是否存在着项的自然数N,使得对于任意自然数n都有an

q=a(n+1)/a(n)=[(n+2)*0.9^(n+1)]/[(n+1)*0.9^n]==9(n+2)/10(n+1),当n1,a(n+1)>a(n);当n=8时,9(n+2)/10(n+1)=1

已知数列an的首项a1=3R,对任意自然数n都有2R/(an-an+1)=n(n+1)

第二问应该是bn=R^n/(a1a2a3……an)?(1)2R/(an-an+1)=n(n+1),an+1-an=-2R/n(n+1)=-2R[1/n-1/(n+1)],得到:a2-a1=-2R(1-