已知点ab在半径为1的圆o上,直线ac与圆o相切,oc垂直于ob

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:32:41
已知点ab在半径为1的圆o上,直线ac与圆o相切,oc垂直于ob
已知Rt三角形ABC中,角c=90度,点o在AB上,以o为圆心OA为半径的圆与AC、AB分别交于点D、E,且角A=角CB

1.在圆O中因为AE是圆O的直径,得到三角形ADE是直角三角形,即AD⊥DE由AC⊥CB得DE∥CB,从而∠DBC=∠EDB,由条件∠A=∠DBC=∠EDB得,在圆O中∠A=∠EDB,从而DB为圆O的

已知Rt三角形ABC中,角c=90度,点o在AB上,以o为圆心OA为半径的圆与AC、AB分别交于点D、E,且bc平方

连接DE,因为AE为圆O的直径,所以角ADE=90°,即DE⊥AC.因为角C=90°,所以BC⊥AC所以BC∥DE,角DBC=角BDE又因为BC²=CD*CA,角C为公用角,所以RT△DCB

已知∠BAC=45°,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那

当⊙O与AC相切时,OA最长,故OA=Rsin∠BAC=122=2,∵点O与点A不重合,∴故OA的长应大于0,∴x的取值范围是0<x≤2.故选A.

如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心OB为半径的圆与AB交于AB于点E,与AB切于点D

:(1)连接OD,则OD⊥AC,∴∠ODC=∠OBC=90°,∵OC=OC,OD=OB,∴△ODC≌△OBC,∴∠DOC=∠BOC;∵OD=OB,∴∠ODE=∠OED,∵∠DOB=∠ODE+∠OED,

如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心OB为半径的圆与AB交于AB于点E,与AB切于点D.

证明:作辅助线DO,因为∠B=90°,以O为圆心OB为半径的圆与AB交于AB于点E,与AB切于点D.,所以∠CDO=90°,又因为OD=DB,OC为公共边,所以三角形DOC全等于三角形OBC,所以∠D

已知,如图,在RT三角形ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC为半径的圆与AC、AB分

BD与圆O相切证明:连结ODOA=OD∴∠A=∠ODA∵∠CBD=∠A∴∠ODA=∠CBD∵∠CDB+∠CBD=90°∴∠CDB+∠ODA=90°∴∠ODB=90°∵OD是圆O的半径∴DB与圆O相切2

圆O的半径为5cm,弦AB为6cm,在圆O上到直线AB的距离为1cm的点有 个

如图,明显直线上部存在两个点,下部存在一个点总共3个.

【数学题】已知,如图所示Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB分别交于点

(1)连接DE,因为OA=OD=OE,三角形内角和关系,∠ADE=90°,则DE平行BC,∠EDB=∠CBD=∠A,所以∠ODB=90°,所以是相切关系.(2)设AD长为8a,则AO=5a,AE=10

已知圆O的圆心在直角坐标系的原点,半径为1,点P是圆O上的一个动点(不在坐标轴上),

貌似8个每个象限2个这2个都关于该象限角平分线轴对称哦~TOBEHONEST,问网友还不如问老师......

已知点ABCD在圆O上,AB//CD,AB=24,CD=10,圆O的半径为13,则梯形ABCD的面积是多少

因为AB//CD,所以可过O点做AB、CD的垂线EF,EF分别交AB、CD于点E、F,则点E、F分别为AB、CD的中点,连接AO、CO,则在直角△AEO中,AO=13,AE=24/2=12,所以由勾股

已知圆O的半径为10,弦AB的长为10根号3,点C在圆O上,且点C到弦AB所在直线的距离为5

结合垂径定理和勾股定理可求得O到AB距离也是5当C和O在AB同侧时,图形是梯形面积为25+25根号3当C和O在AB异侧时,图形是菱形面积为50根号3

j已知AB是半径为1的圆O的一条弦,且AB=a小于1,以AB为一边在圆O内作正三角行ABC,D为圆O上不同于点A的一点,

答;由题意可知.A.C.D三点在以B为圆心,a为半径的圆上.圆弧AC所对的圆心角是角ABC=60°.所对圆弧角是角ADC,则等于30°有因为角ADC等同于角ADE是以O为圆心的圆弧角,则圆弧AE对应的

已知:在△ABC中,∠B=90度,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC相切于点D.求证:DE

证明:连接OD∵OD是圆O的切线∴OD⊥AC易证△OCD≌△OCB(HL)∴∠BOC=∠DOC∵OD=OE∴∠ODE=∠OED∵∠BOC+∠DOC=∠ODE+∠OED∴∠ODE=∠DOC∴DE‖OC

已知:在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB分别交于点D、E,且∠CBD

(1)相切.故答案为:相切.(2)证明:连接OD,∵AE是⊙O的直径,∴∠ADE=90°,∴∠A+∠AED=90°,∵∠C=90°,∴∠ADE=∠C,∴DE∥BC,∴∠EDB=∠CBD,∵∠CBD=∠

如图,已知△AOB中,∠AOB=90°,OD⊥AB于点D.以点O为圆心,OD为半径的圆交OA于点E,在BA上截取BC=O

证明:连接CO,∵BC=OB,∴∠1=∠2,∵∠AOB=90°,∴∠2+∠4=90°,∵OD⊥AB,∴∠1+∠3=90°,∴∠3=∠4,在△CEO和△CDO中EO=DO∠3=∠4CO=CO,∴△CEO

已知,如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心.OA长为半径的圆与AC,AB分别交于点D,E,且∠

AD:AE=8:10连接deade相似于abc折AC:AB=8:10分别设为8x10x勾股定理后面就简单啦88