已知点e,f,g,h是凸四边形的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:47:05
证明:如图所示,连接EF、FG、GH、HE.∵E、F、G、H分别为AB、BC、CD、DA的中点,∴EF∥AC,HG∥AC,∴EF∥HG,同理,EH∥FG,∴四边形EFGH是平行四边形.设EG∩FH=O
四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以菱形
证明:(1)在平行四边形ABCD中,∠A=∠C,又∵AE=CG,AH=CF,∴△AEH≌△CGF∴EH=GF在平行四边形ABCD中,AB=CD,AD=BC,∴AB-AE=CD-CG,AD-AH=BC-
ABCD是平行四边形,所以角DAB等于角BCD,AH,CF分别是对应的角平分线,可以得出角DAE等于角BCG,同理角ADE等于角CBG,而AD等于CB,所以三角形ADE全等于CBG.所以DE=BG,同
连接EFGH则EF在平面ABC中而GH在平面ACD中平面ABC与平面ADC交于AC且两平面成一定角度,所以如果两个平面中存在平行线则这两个直线一定平行于两个平面的交线所以可得EFGH平行于AC
证明:∵E是AB的中点,H是BD的中点∴EH是△ABD的中位线∴EH=1/2AD同理:FG是△ACD的中位线,EG是△ABC的中位线,FH是△BCD的中位线∴FG=1/2AD,EG=1/2BC,FH=
简单再问:好吧!再答:我做再答: 再答:早再答:对了再答:给好评再答:给嘛!再答:hi再问:谢谢。再问:很好!再问:很好!再问:错了我找你。再答:加入梦之都群368575682为你解答再问:
∵E,F,G,H分别是AB,CD,AC,BD的中点∴EH∥AD,且EH=1/2ADGF∥AD,且GF=1/2ADEG∥BC,且EG=1/2BCFH∥BC,且FH=1/2BC又∵AD=BC∴EH=GF=
证明:∵F是CD的中点,G是AC的中点∴FG是△ACD的中位线∴FG//AD,FG=1/2AD∵E是AB的中点,H是BD的中点∴EH是△ABD的中位线∴EH//AD,EF=1/2AD∴FG//EH,F
因为OA=OC,BA=BC,点E,F,G,H分别为OA,AB,BC,C0的中点.所以EF平行且等于0.5BOGH平行且等于0.5BO所以EF平行且等于GH同理可得FG平行且等于EH所以EFGH是矩形(
如果是矩形,则变成菱形;如果是菱形,则变成长方形;如果是正方形,则还是正方形
证明:P∈EF,而EF在面ABC内P∈GH,而GH在面CAD内所以点P是面ABC与面CAD的交点,而AC又是面ABC与面CAD的交线,(两面的交线唯一)所以交点P一定在交线AC上
答:四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以
正方形很简单因为本来大正方形四条边微都相等然后那四个点又都是中点所以那四条边都被平分还是相等所以中间是个正方形(你自己画个准确的图一看就知道了)!用全等证明~
还是正方形;连接大正方形的两条对角线,由中位线定理知:四边形EFGH是平行四边形;由正方形对角线垂直且相等得平行四边形EFGH的邻边垂直且相等;所以平行四边形EFGH是正方形;
连接AC,由三角形的中位线可只EF平行且等于GH(或者FG平行且等于HE),也就是都等于AC/2,所以四边形EFGH是平行四边形.
因为BD//EFGH,BD含于平面ABD,EH含于ABD,所以BD平行于EH,同理BD//GF,所以EH//GF,同理可证HG//EF,所以EFGH为平行四边形
证明:平行四边形ABCD中AB‖CD、AB=CDE.F分别是AB,CD的中点,∴AE=CF,四边形AECF是平行四边形,AF‖CE同理:BF‖DE∴四边形EHFG是平行四边形(两组对边分别平行的四边形
证明:因为四边形ABCD是平行四边形所以,AB//CD所以,角BAD+角ADC=180因为AF平分角BAD,DF平分角ADC所以,角FAD=1/2角BAD,角ADF=1/2角ADC所以,角FAD+角F