A B为N阶正定矩阵 方程xA-B=0的根是1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 08:33:16
正定则顺序主子式都大于0所以|A|≠0,|B|≠0所以|AB|=|A||B|≠0所以AB可逆所以(C)正确.再问:这样呀,那其它答案为什么不正确,或者为什么不能确定呢?
证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=
终于看明白了,稍等啊再问:则B必为()然后四个选项ABCD选哪个?不好意思括号没打再答:矩阵A是正定矩阵,则它一定是可逆矩阵,与可逆矩阵相似的矩阵一定也是可逆矩阵。故选C.与实对称矩阵相似的矩阵未必是
证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=
因为AB=BA所以(AB)^T=B^TA^T=BA=AB所以AB是对称矩阵.由A,B正定,存在可逆矩阵P,Q使A=P^TP,B=Q^TQ.故AB=P^TPQ^TQ而QABQ^-1=QP^TPQ^T=(
因为A正定,所以存在可逆阵C,使得A=C^TC而AB=C^TCB=C^T(CBC^(-1))C所以AB与CBC^-1合同.所以有AB正定CBC^-1正定CBC^-1的特征值都大于0B的特征值都大于0
注意CC^TB相似于C^{-1}(CC^TB)C=C^TBC即可再问:条件没说A正定额。再答:没看清楚,不过好办,假定B正定,用上述方法得到AB的特征值是实数。若B奇异,取正定矩阵序列B_k=B+1/
OK 这个有图片 请点击看大图
楼上的证法是错的.错在“对于任意非零列向量X有XX'>0”X是列向量,XX'是一个矩阵,根本不是一个数,不能说大于零还是小于零.因此不能约去.我觉得就正定性而言,根本不能推出AB是正定的比如A=211
再问:不妨设,否则。。。这句怎么能这么做?看不懂这里再答:作成pdf文档,楼主可下载查看
除非n=1,不然怎么可能有那么强的结论,随便举个反例就行了即使加上AB=BA的条件,也得额外考虑一个排列的问题,没那么轻描淡写再问:矩阵四则运算后,和原来的特征值和特征向量还有关系吗?再答:大多数情况
首先需要说明kA+lB是对称的,这是因为(kA+lB)'=kA'+lB'=kA+lB,然后对于任意的x不等于0,有x'(kA+lB)x=kx'Ax+lx'Bx>0(因为A,B均正定),得证.
首先证明任取n维列向量x≠0,Bx≠0因为R(B)=n,所以存在B的n级子式不为0,不妨设B前n行构成的子式|B1|不为0,则若B1x=0必有x=0,矛盾.所以B1x≠0,所以Bx≠0.这样因为A正定
首先,正定矩阵就必须是对称对阵,也就是A^T=A&B^T=B,所以第一行可以推出第二行;其次,如上面答案所说,矩阵P跟单位矩阵E合同,那么P正定,这个是判定正定矩阵的一个方法.
再问:谢谢啊!!网上的我都看不懂,看懂了你教的了。
设X为任意列向量X'(A+B)X=X'AX+X'BX>0所以A+B为正定矩阵
实对称矩阵A,B,分别存在实对称正定矩阵C,D,使得A=C^2,B=D^2则有C'(AB)C=C^-1(CCDD)C=CDDC=C'D'DC=(DC)'DC=E'EE=DC可逆,所以C'(AB)C正定
这个(C)正确因为A,B正定所以|A|>0,|B|>0所以|AB|=|A||B|>0所以AB可逆.
对A用对称阵的规范型来作.再问:它分成了两项,怎么弄到一起额再答:-》如果A满秩,取B=A《-反证法。如果A不满秩,假定A本身就具有规范型。A的规范型中有0,这样AB+BTA,有零对角元素,不可能是正
1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值