已知点P是⊙O外一点,利用尺规作出⊙O的两条切线PA.PB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:23:59
只知道一种(真正的尺规作图的话,应该没别的了)连接点P和点O(没圆心的话得先用两条弦的中垂线确定圆心);以OP为直径做圆(需用作中垂线的方法找OP中点);改圆和圆O交于两点M、N;作直线PM和直线PN
解题思路:本题主要根据切线性质和平行线的判定解答。解题过程:
首先在圆内随便画一条直线,通过圆上两点A,B,然后用尺规做两点的间的垂直平分线,然后再用上诉方法做另一条垂直平分线,两条垂直平分线的交点就是圆心,然后就能做随便一点的切线```
延长PO交圆0于点E,连接AE因为EC是圆O的直径所以角EAC=90度因为AD垂直EC所以角ADC=90度因为角ACD=角ECA所以角DAC=角EAO因为角DAC=角CAP所以角EAO=角CAP所以角
(1)解法一:连接OB.∵PB切⊙O于B,∴∠OBP=90°,∴PO^2=PB^2+OB^2,∵PO=2+m,PB=n,OB=2,∴(2+m)2=n2+2^2m^2+4m=n2;n=4时,解,得:m1
有两种情况1)点p在圆外,这时半径=(8-2)x1/2=32)点p在圆内,这时半径=(8+2)x1/2=5在这画图比较麻烦.如果还不明白的话,我给你画出来
一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心
(1)证明:连接OB,∵OC=OB,AB=BP,∴∠OCB=∠OBC,∠PAB=∠PBA,∵AP为圆O的切线,∴∠PAB=∠C,∴∠PBA=∠OBC,∵∠ABC=90°,∴∠OBC+∠OBA=90°,
证明:如图1连接OM,OA,∵连接OP,作OP的垂直平分线l,交OP于点A;∴OA=OP,∵以点A为圆心、OA为半径画弧、交⊙O于点M;∴OA=MA=OP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠O
且点P到圆O上的点的最近距离是3,最远距离是7,所以,圆的直径是4,半径是2圆的面积等于4π再问:能仔细讲解一下吗?我数学不太好谢谢了再答:如这个图,园外的一点到圆的最近的距离,和最远的距离,三点在一
过点O上一点P作两条弦PAPB,若PA=PB则PO平分∠APB连接OA,OB∵PA=PB,OP=OP,OA=OB(半径)∴△AOP≌△BOP∴∠APO=∠BPO∴OP平分∠APB
连接OP,尺规法找到OP中点M,以M为圆心,OP为直径作圆与圆O交于点A,点B连接PA,PBPA,PB即为所求切线
连接圆心和P点,用尺规画出这一线段的中点,以这条线段的中点为圆心,这条线段的一半长为半径作圆,辅助圆与已知圆的交点就是切点,然后连接就可以了
连接OP,以OP为直径作圆与圆交于A、B两点,连PA、PB即为所求.由于OP是直径,那么角OAP角OBP都是直角,PA、PB都是圆O的切线.是一个数学的教育平台好像,记的初中数学书里经常出现这个Z+Z
当点在圆内时,圆的直径是16+4=20,所以半径是10cm.当点在圆外时,圆的直径是16-4=12,所以半径是6cm.故⊙O的半径是10cm或6cm.
证明:连PO交ST于点D,则PO⊥ST;连SO,作OE⊥PB于E,则E为AB中点,于是PE=PA+PB2因为C、E、O、D四点共圆,所以PC•PE=PD•PO又因为Rt△SPD∽Rt△OPS所以SPP
1、连接圆O的圆心O和P两点2、分别已点O和P为圆心,已OP长为半径,做两个圆3、两个圆的两个交点为A,B两点,连接AB与OP交于C点4、已C点为圆心,已CP为半径做圆,交圆O于D,E两点5、连接PE
∵P是△ABC所在平面外一点,点O是点P在平面ABC上的射影又∵PA=PB=PC,则O点到A,B,C的距离也相等即OA=OB=OC则O点为△ABC的外心故选A
本题没有明确告知点的位置,应分点在圆内与圆外两种情况,当点P在⊙O外时,此时PA=4cm,PB=9cm,AB=5cm,因此直径为5cm;当点P在⊙O内时,此时PA=4cm,PB=9cm,直线PB过圆心