已知点Q(2,0)和圆C:x² y²=1,动点M到圆的切线长与(M
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 14:19:47
动点M(x,y)到圆C的切线长的平方=动点M到圆心C的距离的平方-R²,则:切线长d=√[MC²-R²]d:|MQ|=√2d=√2|MQ|d²=2|MQ|
设:M(x,y).切点为T,则|MT|=|MQ|+1|MT|^2=|MQ|^2+2|MQ|+1|OM|^2+1=|MQ|^2+2|MQ|+1代以坐标:x^2+y^2=(x-2)^2+y^2+2*根号[
1、(x-2)^2+(y-7)^2=8,圆心(2,7),半径为2√2,(m-2)^2+(m+1-7)^2=8,m^2-8m+16=0,m=4,P(4,5),斜率k=(5-3)/(4+2)=1/3,PQ
对c求导,y`=3x^2-1,Q处的切线平行于y=11x-1,说明y`=3x^2-1=11,x=±2,Q为(2,8)或(-2,-4),切线方程分别为y=11x-14,y=11x+18
X^2+y^2-6x-6y+14=0(x-3)²+(y-3)²=4圆心为C(3,3),半径为2设M(x,y),则CM⊥PQ,即CM⊥AM,则CM与AM的斜率之积等于-1,所以[(y
解题思路:圆与直线。解题过程:
|MQ|的最大值是Q到圆心的距离d再加上圆的半径;|MQ|的最小值是Q到圆心的距离d减去圆的半径.x²+y²-4x-14y+45=0(x-2)²+(y-7)²=
设M(x,y)动点M到圆O的切线长与MQ的绝对值的比等于常数1MO^2-1=MQ^2x^2+y^2-1=(x-2)^2+y^2x^2+y^2-1=x^2-4x+4+y^2-1=-4x+44x=5点M的
B点在○c上,求出B关于直线x+y+2=0的对称点B*(-4,-2)圆心c(2,1)连结B*和c则直线LBC与已知直线相交的点即为P点最小值是BC的绝对值减半径P求出为(-4/3,-2/3)图不好画,
要画下图的1)设A与圆分别切于MN两点连接AMANAC(圆心)CMCN整理下圆的方程得(x+1)^2+y^2=1是一个以(-1,0)为圆心1为半径的圆此圆经过(-2,0)A是(-2,2)所以一条切线是
1、设直线AM方程为y=k(x-3),联立圆的方程,当方程有唯一解,即直线与圆相切时k取得最大和最小值为+-根号2/4.2、可令角p'pA=a,则其余各边均可用a表示.可得圆C'的方程为(x-3)^2
(1)把P(a,a+1)坐标代入x²+y²-4x-14y+45=0……①得a²+(a+1)²-4a-14(a+1)+45=0解之,得a=4则P坐标为(4,5)线
MQ|的最大值是Q到圆心的距离d再加上圆的半径;|MQ|的最小值是Q到圆心的距离d减去圆的半径.x²+y²-4x-14y+45=0(x-2)²+(y-7)²=(
设m的坐标为(x,y) ,则MQ=根下((x-2)^2+y^2),m到圆心的距离为根下(x^2+y^2),圆的半径为1,由勾股定理知m到圆C的切线长为根下(x^2+y^2-1).
C:(x-2)^+(y-3)^2=4设圆上点Q(2+2cosa,3+2sina)则x+y=2sina+2cosa+5=2倍根号2乘sin(a+b)+5所以,x+y的最大值和最小值分别为5+2倍根号2,
设P(x_1,y_1),Q(X_2,Y_2) 因为pq在椭圆上,所以 {█(x_1^2+〖4y〗_1^2=16①@x_2^2+4y_2^2=16②)┤ &nb
(1)因为点P(m,m+1)在圆C上,所以p点坐标满足圆的方程,将p(m,m+1)代入圆的方程得:m^2+(m+1)^2-4m-14(m+1)+45=0,化简得,m^2-8m+16=0解得m=4,所以
设M(x1,y1),根据切线长可得如下方程:为(根号((x1-2)平方+y1平方))×A=根号((x1平方+y1平方)-1)
圆C:(x-2)^2+(y-7)^2=8(m-2)^2+(m-6)^2=8m^2-8m+16=0m=4P(4,5)k(PQ)=(3-5)/(-2-4)=1/3M是圆上任一点连Q与圆心(2,7),交点一