已知直线abcd相交于点o,oe平分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:43:22
已知直线abcd相交于点o,oe平分
在平行四边形ABCD中,对角线AC,BD相交于O,过O点任意作两条直线交平行四边形ABCD的AB、CD边于E,F

证明:∵平行四边形ABCD∴AO=CO,∠BAO=∠DCO∵∠AOG=∠COH(对顶角相等)∴△AOG≌△COH(ASA)∴OG=OH∵平行四边形ABCD∴AO=CO,∠BAO=∠DCO∵∠AOG=∠

已知正方形ABCD的对角线AC,BD相交点O,点P是直线AB上一点,PE⊥BD交直线BD于点E,PF⊥AC交直线AC于点

(1)∵ABCD是正方形,∴AC⊥BD,∵PF⊥BD,∴PF∥AC,同理PE∥BD,∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=45°,∴PF=BF.∴PE+PF=OF+FB=OB=acos4

已知在平行四边形ABCD中,对角线AC,BD相交于点O,直线EF过点O,分别交AD,BC于E,F,直线GH过点O,分别交

∵四边形ABCD是平行四边形,∴AB∥DC,∠GAO=∠HCO,∠AGO=∠CHO,AO=CO,∴△AGO≌⊿CHO,∴OG=OH,同理OE=OF,∴四边形EGFH是平行四边形.

已知:如图,平行四边形ABCD的对角线AC,BD相交于点O,过点O的直线与AD,BC分别相交于点EF.求证OE=OF

证明:因为AD平行BC,所以角AEO=角CFO,角EAO=角FCO,而OA=OC所以三角形AEO全等于三角形CFO所以OE=OF

在平行四边形ABCD中,对角线AC,BD相交于点O,直线EF经过点O,且分别交AB,CD于点E,F.

S平行四边形AEFD=S平行四边形BCFE证明:由已知可得:∠AOE=∠FOC,∠AEO=CFO,且点O为EF的中点故:三角形AEO=三角形DOF[角边角定理]同理可得:三角形ADO=三角形CBO,三

已知:如图,平行四边形ABCD的对角线AC,BD相交于点O,过点O的直线与AD,BC分别相交于点EF.求证BE=DF

过O做AD平行线分别交AB,CD与M,N.由于BC平行AD,AD平行于MN,O为平行四边形ABCD中点.所以O评分EF,即OE=OF,又因为BO=BD,角FOD和角EOB为对顶角,所以两角相等.所以三

已知:如图,在正方形ABCD中,对角线AC,BD相交于点O

因为AC,BD为正方形ABCD的对角线则AC⊥BDAO=CO角BAC=45º因为EG⊥AC三角形AEG为等腰直角三角形AG=EG因为EF⊥BD所以EFOG为矩形EF=OG因此EG+EF=OG

平行四边形ABCD的对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD交于点E,F

当直线AC绕O点顺时针旋转45°时四边形BEDF是菱形∵平行四边形ABCD∴AD‖BC,BO=DO∴∠BEO=∠DFO,∴在△BOE与△DOF中,∠BEO=∠DFO,∠BOE=∠DOF,BO=DO∴△

如图 已知直线a b,c d ,e f相交于点o

是70度啦.再问:求过程再答:因为AB垂直CD,所以角AOC=90度角DOF于角COE为对顶角=50度所以角AOE=角AOC+角COE=90+50=140度又因为角AOG=角GOE,所以OG是角AOE

已知:如图,平行四边形ABCD的两条对角线相交于点O,直线EF,GH过点O,分别交AD,BC,AB,CD于E,F,G,H

证明:∵平行四边形ABCD∴∠BAD=∠BCD,AB=CD,∠ABD=∠CBD∵AF⊥BD,CE⊥BD∴AF∥CE∵AF平分∠BAD∴∠BAF=∠BAD/2∵CE平分∠BCD∴∠DCE=∠BCD/2∴

已知:如图,在平行四边形ABCD中对角线AC、BD相交于点O,直线EF过点O,分别交AD、BC于

因为四边形ABCD是平行四边形,所以AC和BD互相平分,所以BO=DO,又角EDO=角FBO角BOF=角DOE所以三角形BOF全等于三角形DOE,所以EO=FO.同理可证三角形BOG全等于三角形DOH

如图,平行四边形ABCD的对角线AC与BD相交于点O,直线EF过点O,且与AB,DC分别相交于点E和点F,直线GH过点O

∵ABCD为平行四边形,可得:∠OBE=∠ODF,OD=OF∵∠BOE与∠DOF为对角,所以∠BOE=∠DOF∴△BOE≌△DOF(角边角)∴OE=OF同理可证OH=OG∴可得四边形GEHF是平行四边

如图 已知平行四边形abcd的对角线AC,BD相交于点O,点EFP

由题意得:AB=AO=OC=CD,连接OP,则OP为AB中位线,所以:OP∥AB,OP=(1/2)AB=(1/2)OC=OF;显然三角形ABO与三角形COD为等腰三角形,所以∠POD=∠ABO=∠AO

已知:如图平行四边形ABCD的对角线AC,BD相交于O,直线EF经过O点且与AD、BC分别相交于E,F.求证OE=OF

因为;四边形ABCD为平行四边行所以;OB=ODAD//BC所以;角ADB=角DBC又因为;角EOD=角BOF所以;三角形EOD全等于三角形BOF所以;OE=OF

如图①,四边形ABCD是平行四边形,对角线AC,BD相交于点O,过点O做直线EF分别交AD,BC于点E,F.

(1)证明:因为四边形ABCD是平行四边形所以OA=OCAD平行BC所以角OAE=角OCF角OEA=角OFC所以三角形OEA和三角形OFC全等(AAS)所以OE=OF(2)结论成立证明:因为四边形AB

如图所示,在平行四边形ABCD中,对角线AC与BD相交于点O,过点O任作一条直线分别交AB,CD于点E,F

证明:因为四边形ABCD是平行四边形所以DO=BO,DC∥AB所以∠FDO=∠OBE又因为∠DOF=∠BOE,DO=BO所以△DOF≌△BOE(SAS)所以OE=OF2)由△DOF≌△BOE得DF=B

已知,如图,两个同心圆都以O为圆心,一条直线与两个同心圆依次相交于点ABCD,求证AB=CD.

法一:做辅助线OA.OB.OC.ODOB=OC,角obc和角ocb相等,可得角abo=角ocd又因为oa=od且角oad=角oda则三角形oab和三角形odc全等可得ab=cd法二:做三角形obc的高

平行四边形ABCD的对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC.AD于点E、F.

∵AB‖BC∴∠OAF=∠OCB∵OA=OC,∠AOF=∠COE∴△AOF≌△COE∴AF=EC当EF⊥BD时,四边形BEDF是菱形由⑵的证明知AF=EC∴BE=DF∵BE‖DF∴四边形BEDF是平行

 已知:如图,正方形ABCD,AC、BD相交于点O,E、F分别

按题意,可知OM应为CE的一半.如果假设M无限接近于B点,则E也将无限接近于B点,此时OM趋于CE/√2,③并不成立所以你确定题目或答案都没弄错?要是你确定题目没错,那么要敢于质疑参考答案的正确性.因