已知直线L1,L2 和平面A所成的角相等,能否判断直线L1平行直线L2?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:56:38
两直线垂直的充要条件是两直线的斜率之积为-1
L1与x轴交于(1,0),与y轴交于(0,-3)L2与x轴交于(-22/3,0),与y轴交于(0,-22/9)L1、L2交于(1/6,-5/2)S=(1+22/3)*5/2*1/2=125/12
大于0小于等于90
两组解第一组:L1:x=5,L2:x=0第二组:L1‖L2,故设L1,L2斜率是kL1方程是:y=k(x-5)=kx-5k,即kx-y-5k=0L2方程是:y=kx+1.即kx-y+1=0L1与L2之
先计算出L1经过的一点是(5/13,25/13)L1:5y-12x-5=0L2:5y-12x+60=0
解题思路:此题重点考查上了立体几何做题时的特殊模型及空间向量的解题的方法,还考查了直线与平面所成角的概念及做题时把问题等价转化的思想.解题过程:同学你好,如对解答还有疑问,可在答案下方的【添加讨论】中
重合因为L1//L2,b//L2所以b//L1而过直线外一点作该直线的平行线只能作一条所以a和b重合
解若l1//l2则1-a²=0∴a=1或a=-1当a=-1时x-y=0与-x+y=0重合∴a=1即x+y-4=0x+y-2=0两平行线的距离为d=/-4+2//√2=√2
由题意知,直线l2到直线l1的角等于60°,直线l1的斜率为tan15°=tan(60°-45°)=3−11+3=2-3,直线l2的斜率为k2,由一条直线到另一条直线的角的公式得 tan60
(1)作PE平行l1,l2所以∠1=∠CPE,∠2=∠EPD因为∠3=∠CPE+∠EPD所以∠3=∠1+∠2(2)不发生变化(3)①当P点在A的上方时,作PF平行l1,l2所以∠1=∠FPC,∠FPD
a=-1,c=1,m=-1/2你这个是第八题对不如还有新的问题,另外发问题并向我求助或在追问处发送问题链接地址.哥哥为你加油哦!
/>异面直线所成的角是锐角或者直角,若直线l1的方向向量与l2的方向向量的夹角是150°∴直线l1和直线l2所成的角是150°的补角∴直线l1和直线l2所成的角是30°
证明:连接AF,交L2于G点,连接BG、GE,可知BG//CF,GE//AD在∆ACF中,BG//CF即AB/BC=AG/GF在∆ADF中,GE//AD即DE/EF=AG/GF
L1交L2于A,L1,L2共面B在L2上C在L1上直线BC(即L3)在平面L1,L2确定平面上.
图呢再问:再答:题目发全好不再问:再答:先证明四个三角形全等,因为临边相等的矩形是正方形,l1平行于l2,所以pmnq是矩形,又因为全等,所以pn等于nm再问:可不可以用PM和QN的垂直呢如果要用应该
2条.展开我们的想象:我们设直线l与平面a的交点为A,那么过A点与平面a成60度角的所有直线为一个顶角为60度的锥形,70度的为一个顶角40度的锥形,而与直线l成70度且过A点的直线也形成一个70度顶
(1)∠2=∠1+∠3.证明:如图1,过点P作PE∥l1,∵l1∥l2,∴PE∥l2,∴∠1=∠APE,∠3=∠BPE.又∵∠2=∠APE+∠BPE,∴∠2=∠1+∠3;(2)①如图2所示,当点P在线
直线方向向量体现直线斜率即直线1斜率为3/1=3直线1⊥直线2即K1*K2=-1K2=-1/3经过点(0,5)设直线2为y=kx+b代点得5=0+b即b=5∴直线2为y=-1/3x+5直线两边乘以-3
延长DP交l1于点E∠α+∠β=∠γ因为l1∥l2所以∠1=∠β因为∠CPD是△PCE的外角所以∠CPD=∠1+∠β所以:∠α+∠β=∠γ
∵∠1=∠3∠1+∠4=180°∴∠1+∠3=180°∵∠1和∠3互为同内角又同内角互补两直线平行∴l1∥l2