已知直线l:y=kx与圆C1(x-1)^2 y^2=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:15:08
已知直线l:y=kx与圆C1(x-1)^2 y^2=1
已知直线l:kx-y-3k=0;圆M:x2+y2-8x-2y+9=0,(1)求证:直线l与圆M必

证明:园M:(x-4)²+(y-1)²=8,圆心M(4,1);半径R=2√2直线L:kx-y-3k=0过定点P(3,0)│MP│=√[(4-3)²+(1-0)²

已知曲线C1:y=e^x与C2:y=-1/e^x,若直线l是C1,C2的公切线,试求l的方程

C1:y'=e^x,C2:y'=e^(-x),若存在相同直线,则e^(x1)=e^(-x2),又e^x是单调递增函数,所以x1=-x2,即x1、x2关于y轴对称.因为直线过x1,x2,即过点(x1,e

已知圆o,X方+Y方=2,直线l:Y等于KX-2,诺直线与圆相切,求K的值

x^2+(kx-2)^2=2(k^2+1)x^2-4kx+2=016k^2-4(k^2+1)*2=0k^2=1k=1,-1

已知圆O:x2+y2=1与直线l:y=kx+2

(1)当k=2时,直线l的方程为:2x-y+2=0-------(1分)设直线l与圆O的两个交点分别为A、B过圆心O(0,0)作OD⊥AB于点D,则OD=|2×0-0+2|22+(-1)2=25---

跪求圆锥曲线题解已知圆C1:(x+4)^2+y^2=16抛物线C2:y^2=-4x直线L:y=kx+1若直线与抛物线C2

你先看一下我给你画的图,你就明白这个题目怎么做了.实际上,我图上做了4条直线 L1,L2,L3,L4(设定其K值分别为K1,K2,K3,K4 ) 这四条直线是符合&nbs

已知直线l:x-y-1=0与圆C1:(x-3)2+(y-4)2=2相切于点p

/>有题目得圆心为(3,4),r=根2.作过圆心的直线l2与l垂直,l2的斜率为l的负倒数,也就是-1由此可知l2方程为:x+y-7=0,l与l2的交点即为点p联立方程组,可得p(4,3)因为l1过点

已知直线l:y=kx+1与椭圆x

设直线l与椭圆的交点坐标为M(x1,y1),N(x2,y2),由y=kx+1x22+y2=1消去y得(1+2k2)x2+4kx=0,所以x1+x2=−4k1+2k2,x1x2=0,由|MN|=423,

已知两曲线C1:xy=1,C2:xy=3/4,直线l:y=kx+b(k不等于0)与C1只有一个公共点,且被C2截得的弦长

将y=kx+b代入xy=1x(kx+b)=1kx^2+bx-1=0因为y=kx+b(k不等于0)与C1只有一个公共点1.k=0x=1/b直线l为y=b与C2:xy=3/4只可能有一个交点,不满足条件2

直线l:y=kx与圆C1:(x-1)^2+y^2=1相交于A、B两点,圆C2与圆C1相外切,且与直线l相切于点M(3,根

点M(3,√3)在直线l上,代入直线方程得k=√3/3;过M与l垂直的直线方程为y=-√3(x-3)+√3=-√3x+4√3;圆C2的圆心应在此直线上;若设C2的圆心坐标为(x,y),则|C2C1|=

已知圆C1:X^2+Y^2=4,C2:X^2+Y^2-2X-4Y+4=0,与直线L:X+2Y=0,求经过C1,C2的焦点

在直角坐标系中做出各图.发现L过C1的焦点,而求的圆要与L相切,那么(0,0)为所求的圆上的点,那么过点(0,0)且与L垂直的直线方程为Y=2X,则直径在其上,所以圆心也在上面,设圆心为P(X1,Y1

已知圆o:x2+y2=4,直线l:kx-y-k-1=0 求直线l与圆O的位置关系

由点到直线距离公式,圆心(0,0)到直线kx-y-k-1=0距离d=|-k-1|/√k^2+1=|k+1|/√k^2+1=√(k+1)^2/k^2+1=√1+[2k/(k^2+1)]

已知圆C1:x的平方+y的平方=2和圆C2,直线L与圆C1切与点(1.1),圆C2的圆心在射线2X-Y=0(x大于等于0

由题意得,直线l的方程为y=-x+2.设圆的方程为:(x-m)方+(y-n)方=r方则,2m-n=0.r方=m方+n方.r方-[(m+n-2)/2]=12,解得m=2.n=4.r=20.(x-2)方+

已知曲线C1:y=x^2与C2:y=-(x-2)^2 ,直线l与C1.C2相切,求l

关键是设切点设C1:y=x^2与直线相切于点A(a,a²)C2:y=-(x-2)^2与直线相切于点B(b,-(b-2)²)于是根据两点可以求出切线斜率也就是k=【a²+(

已知曲线C1:y=X^2,C2:y=2x^2-3x+3,直线l:y=kx+m,l与C1和C2有四个交点,从左向右依次是A

(1)、曲线C1,C2开口向上,∵C2-C1=x^2-3x+3=(x-3/2)^2+3/4〉0,∴C1,C2没有交点且C2在C1的内部.(2)、四个交点A(x1,y1),B(x2,y2),C(x3,y

已知圆C1:x^2+y^2=2和圆C2,直线l与圆C1相切于点(1,1),圆C2的圆心在射线2x-y=0(x>=0)上,

A(1,1)C1(0,0)容易求出直线C1A的斜率=1因为L是切线,所以与半径C1A垂直所以L的斜率=-1所以L的方程为y=-x+2即x+y-2=0(2)因为C2在直线y=2x上所以可以设C2的坐标为

已知圆C1的方程为x2+(y-2)2=1,定直线l的方程为y=-1.动圆C与圆C1外切,且与直线l相切.

(1)设动圆圆心C的坐标为(x,y),动圆半径为R,则|CC1|=x2+(y−2)2=R+1,且|y+1|=R---(2分)可得 x2+(y−2)2=|y+1|+1.由于圆C1在直线l的上方

已知抛物线C:y2=x与直线l:y=kx+34

设两点存在,分别为A(a2,a),B(b2,b),设AB的斜率为k′,k′=-1k,∴k′=a−ba2−b2=1a+b=-1k,∴a+b=-k,b=-k-a,设M(m,n),则m=a2+b22=(a+

已知曲线C1:y=x2与C2:y=-(x-2)2直线l与C1 C2都相切,求直线l的斜率

已知曲线C1:y=x2与C2:y=-(x-2)2.直线l与C1、C2都相切,求直线l的方程.[解析]设l与C1相切于点P(x1,x),与C2相切于点Q(x2,-(x2-2)2).对于C1:y′=2x,

已知曲线C1:y=x2与C2:y=-(x-2)2.直线l与C1、C2都相切,求直线l的方程.

设直线l的方程为y=kx+b,由直线l与C1:y=x2相切得,∴方程x2-kx-b=0有一解,即△=k2-4×(-b)=0   ①∵直线l与C2:y=-(x-2)2相切得