已知直线l:y=x m与曲线y=根号1-x有两个公共点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:56:25
C1:y'=e^x,C2:y'=e^(-x),若存在相同直线,则e^(x1)=e^(-x2),又e^x是单调递增函数,所以x1=-x2,即x1、x2关于y轴对称.因为直线过x1,x2,即过点(x1,e
因为y=x+b,带入圆的方程,x^2+(x+b)^2=1,x^2+x^2+b^2+2bx=1,x^2+b^2/2+bx=1/2,(x+b/2)^2=1/2-b/4,解得x=±〔√(2-b^2)/4〕-
求导得:y′=2x+3,∵直线l与曲线y=x2+3x-1切于点(1,3),∴把x=1代入导函数得:y′x=1=5,则直线l的斜率为5.故选D
首先把k=1带入直线l,得出y=x-1,画出直线.然后考虑c得图形,圆椭圆或双曲线.建议你自己画图看看,如果要满足条件,曲线c只能是园.所以c的方程式为x^2+y^2=1
∵直线过原点,则k=y0x0(x0≠0).由点(x0,y0)在曲线C上,则y0=x03-3x02+2x0,∴y0x0=x02-3x0+2.又y′=3x2-6x+2,∴在(x0,y0)处曲线C的切线斜率
(1)曲线C:(x-1)+(y-1)=1是以(1,1)为圆心的圆,直线l:y=-(a/b)x+a,可以写为:-(a/b)x-y+a=0;因为l与C相切,则C圆心到l的距离为1,由点到直线的距离方程知:
设直线l与椭圆的交点坐标为M(x1,y1),N(x2,y2),由y=kx+1x22+y2=1消去y得(1+2k2)x2+4kx=0,所以x1+x2=−4k1+2k2,x1x2=0,由|MN|=423,
这题很诡异啊.f’(x)(导数就是斜率)=(x-a)/x^2,x>0.设t=1/x,则)(x-a)/x^2=t-at^2,对-at^2+t进行分析,原式为-a[t-(1/2a)]^2+1/4当t=1/
y=x³y'=3x²①若(1,1)是切点那么斜率是k=3故直线l是y-1=3(x-1)即y=3x-2②若(1,1)不是切点那么设为(a,a³)(a≠1)那么斜率是k=3a
(1)当切点是(1,0),y'=2x^2-1,切线的斜率=2-1=1,切线方程为:y=x-1(2)当切点不是(1,0),设切点是(t,t^3-t)y'=2x^2-1切线的斜率=2t^2-1而切线的斜率
直线L的方程为y=k(x-3)-2,联立y=x^2-4x+6得x^2-(k+4)x+3k+8=0令△=[-(k+4)]^2-4(3k+8)=k^2-4k-16=0,解得x1,2=2±2√5因2+2√5
求导y‘=3X^2-6X+2切点可表示为1(X0,KX0)2(X0,X0^3-3X^2+2X0)求出斜率3X0^2-6X0+2设直线为(3X0^2-6X0+2)*X0+b=X0^3-3X^2+2X0b
曲线C1:y=x2,则y′=2x,曲线C2:y=x3,则y′=3x2,直线l与曲线C1的切点坐标为(a,b),则切线方程为y=2ax-a2,直线l与曲线C2的切点坐标为(m,n),则切线方程为y=3m
关键是设切点设C1:y=x^2与直线相切于点A(a,a²)C2:y=-(x-2)^2与直线相切于点B(b,-(b-2)²)于是根据两点可以求出切线斜率也就是k=【a²+(
函数y=x²的导数为y′=2x函数y=-(x-2)²的导数为y′=-2x+4设直线L的方程为y=kx+b,与C1的切点坐标为(a,a²),与C2的切点坐标为(c,-(c-
曲线C为圆:(x-1)^2+(y-1)^2=1.圆心C(1,1),半径=1直线L:x/a+y/b=1,若直线L与圆相切,则:C(1,1)到直线L距离=半径=|1/a+1/b-1|/根号(1/a^2+1
已知曲线C1:y=x2与C2:y=-(x-2)2.直线l与C1、C2都相切,求直线l的方程.[解析]设l与C1相切于点P(x1,x),与C2相切于点Q(x2,-(x2-2)2).对于C1:y′=2x,
(x-1)^2+(y-1)^2=1圆心(1,1),半径=1直线x/a+y/b=1bx+ay-ab=0圆心到切线距离=半径所以|b+a-ab|/√(a^2+b^2)=1(a+b-ab)^2=a^2b^2
平移直线l,当l与曲线C相切时,则该切点就是曲线C上离直线l最近的点直线l的斜率为2对曲线C求导,得y=1/x令1/x=2得x=1/2得该点为(1/2,-ln2)用点到直线距离公式,得D=|2*1/2
设直线l的方程为y=kx+b,由直线l与C1:y=x2相切得,∴方程x2-kx-b=0有一解,即△=k2-4×(-b)=0 ①∵直线l与C2:y=-(x-2)2相切得