已知直线l与抛物线c:y的平方=4x交与a.b两点 且线段ab的中点m
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:34:44
(1)∵点K(-1,0)为直线l与抛物线C准线的交点∴-p/2=-1,p=2,由此能求出抛物线C的方程y^2=4x.(2)设A(x1,y1),B(x2,y2),D(x1,-y1),l的方程为x=my-
联立解方程组.把y=-2x+m-3带入C得:-2x+m-3=x²+mx+3x²+(m+2)x+6-m=0次方程有且只有一个解.Δ=(m+2)²-4×(6-m)=0解得:m
三条,k=±1时,是切线,k=0时,为对称轴;三条直线方程为:y=x+1,y=-x-1,y=0
用极坐标解抛物线方程:ρ=2/(1-cosθ)设|AF|=2/(1-cosα),α∈[0,2π)则|BF|=2/(1+cosα)|FB|/|AF|=(1-cosα)/(1+cosα)=-1+2/(1+
当直线l经过抛物线的焦点且与x轴垂直时,直线方程为X=P/2,代入抛物线方程得y^2=P即y=√PS△ABC=1/2*AB*P/2=1/2*2√P*P/2=1/2得P=1抛物线方程为y^2=2x(2)
(1)抛物线C:y2=4x的焦点为(1,0)由已知l:y=x-1,设A(x1,y1),B(x2,y2),联立,消y得x2-6x+1=0,所以x1+x2=6,x1x2=1=(2)联立,消x得ky2-4y
设C(x1,y1)D(x2,y2)由题目可知:p=4那么焦点F(2,0)因为直线的倾斜角为45,所以斜率为1所以直线方程为:y=x-2带入抛物线方程中有:(x-2)^2=8x即是:x^2-12x+4=
1.y=-x+32.y=14/9x²+1由题意可知抛物线关于y轴对称,且c=1,a>0,函数式可简化为y=ax²+1①设直线L:y=-ax+3②与这条抛物线交于P(x₁
过M(-1,0)的直线L:y=ax+a与X²=4Y相交,得交点方程:X²=4ax+4a,即:X²=4ax+4a,X²-4ax-4a=0,要有两个交点:16a^2
1、由于抛物线y^2=-4x的焦点坐标为(-1,0),故c=1(对于椭圆而言)当直线L与x轴垂直时,|CD|:|AB|=2√2此时|CD|=4,故|AB|=√2又|AB|=2b^2/a=√2a^2-b
1、直线恒过定点(1,1),此点在圆内,故直线与圆是相交的.2、可以考虑垂径定理,只要圆心到直线的距离小于半径即可.
若斜率不存在,则x=0若斜率存在,则设直线为y=kx+1...①y^2=x...②联解得:k^2*x^2+(2k-1)x+1=0又只有一个公共点即△=0即k=1/4所以直线为y=(1/4)x+1或x=
因为直线AB斜率为根号3(倾斜角为60度),所以A在第三象限,因为向量AM=向量MB,所以B在线段AM延长线上,B在第一象限,且|AM|=|MB|,过B作BD垂直x轴于D,设抛物线准线与x轴交于点E,
等等啊,正在打!再问:哦,O(∩_∩)O谢谢~~辛苦你再答:等等啊,正在打!!!是l1、l2交X轴于A、B两点吗???1.y=x²求导,y’=2xM(m,m²)、N(n,n&sup
设两点存在,分别为A(a2,a),B(b2,b),设AB的斜率为k′,k′=-1k,∴k′=a−ba2−b2=1a+b=-1k,∴a+b=-k,b=-k-a,设M(m,n),则m=a2+b22=(a+
将x=1,y=-2代入抛物线方程得4=2p,所以解得p=2,p/2=1,因此抛物线方程为y^2=4x,焦点坐标为F(1,0),设直线AB方程为y=k(x-1),代入抛物线方程得k^2(x-1)^2=4
C的顶点是原点,距离l2倍根号2l:y=-x+4(-x+4)^2=2pxx^2-(8+2px)+16=0中的横坐标为6所以x1+x2=12=8+2pxp=2焦点为(2,0)
1、C的顶点是原点,距离l2倍根号2l:y=-x+4(-x+4)^2=2pxx^2-(8+2px)+16=0中的横坐标为6所以x1+x2=12=8+2pxp=2焦点为(2,0)
y^2=4x;根据题意,直线的方程为:y-1=k(x+2),代入抛物线方程得到:(kx+2k+1)^2=4xk^2x^2+2(2k+1)kx+(2k+1)^2=4xk^2x^2+(4k^2+2k-4)