已知直线l与抛物线x^2=4y相切与P(2,1)点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:13:56
三条,k=±1时,是切线,k=0时,为对称轴;三条直线方程为:y=x+1,y=-x-1,y=0
希望帮得到你!不懂在留言!
F(1,0)过F点的直线AB:y=kx-kOM⊥AB那么OM的斜率为-1/kOM:y=-x/ky=-x/ky=kx-k-x/k=kx-kk^2=x/(1-x)x取值为(0,1)当l为垂直于x轴的直线是
你先看一下我给你画的图,你就明白这个题目怎么做了.实际上,我图上做了4条直线 L1,L2,L3,L4(设定其K值分别为K1,K2,K3,K4 ) 这四条直线是符合&nbs
令x=0得y=-2;令y=0得x=4;∴抛物线的焦点坐标为:(4,0),(0,-2)--------------------------------------------------(4分)当焦点为
(1)抛物线C:y2=4x的焦点为(1,0)由已知l:y=x-1,设A(x1,y1),B(x2,y2),联立,消y得x2-6x+1=0,所以x1+x2=6,x1x2=1=(2)联立,消x得ky2-4y
将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=
设C(x1,y1)D(x2,y2)由题目可知:p=4那么焦点F(2,0)因为直线的倾斜角为45,所以斜率为1所以直线方程为:y=x-2带入抛物线方程中有:(x-2)^2=8x即是:x^2-12x+4=
解(1)分别设OA,OB的斜率为k1,A(x1,y1),B(x2,y2)∴k1=y1/xi,k2=y2/x2解y²=-xy=k(x+1)得k²x+(1+2k²)x+k&s
A﹙6,9﹚B﹙-4,4﹚过A,B两点的圆与抛物线在A处有共同的切线是3x-y-9=0,过A的直径方程是x+3y-33=0;弦AB的垂直平方线方程是4x+2y-17=0,由此得圆心坐标﹙-16/3,1
l1是4x-3y+a=0则x=(3y-a)/4所以y²=4x=3y-ay²-3y+a=0y1+y2=3y1y2=ax=(3y-a)/4所以x1x2=(3y1-a)(3y2-a)/1
假设存在这样的直线,则FA·FB=MN^2如果斜率不存在,检验一下是否可以,以下讨论斜率存在的情况:注意运用抛物线上一点的性质:设A、B的横坐标分别是x1,x2,则联立直线方程与抛物线方程消元后,可以
设直线方程为:y=2x+b代入y^2=4x得y^2-2y+2b=0因为|AB|=根号(x1-x2)^2+(y1-y2)^2=根号(y1/2-y2/2)^2+(y1-y2)^2=根号5/4(y1-y2)
L的方程为y=2x+b,其中b为未知数.联立y=2x+b与y^2=4x,即为A、B点的坐标,设A为(x1,y1),B为(x2,y2).则AB的长的平方为(x2-x1)^2+(y2-y1)=5^2=25
(1)ABC三点坐标A﹙-4,4﹚B﹙4,4﹚C﹙0,4√2﹚⑵设切点为P﹙a,b﹚﹙b>0﹚,则a^2+b^2=32,切线方程为ax+by=32,代入抛物线x^2=4y得到b²y²
设两点存在,分别为A(a2,a),B(b2,b),设AB的斜率为k′,k′=-1k,∴k′=a−ba2−b2=1a+b=-1k,∴a+b=-k,b=-k-a,设M(m,n),则m=a2+b22=(a+
1,抛物线y^2=4x的焦点是(1,0),L的方程是y=x-1.2,设A(x1,y1)、B(x2,y2).联立直线与抛物线方程消去y得:x^2-6x+1=0.x1+x2=6,x1x2=1.[AB]=√
(1)、∵抛物线方程为:y²=4x∴焦点坐标为(1,0)又∵直线l的斜率为1,且过抛物线的焦点∴直线方程为:y-0=x-1即x-y-1=0(2)、直线l与抛物线交于A、B两点∴将直线方程和抛
1、直线L与抛物线的交点A,B满足方程y=x^2-2x+4=kx化简得:x^2-(2+k)x+4=0而A,B两点的横坐标就是此方程的两个解.即OA1=x1OB1=x2OA1*OB1=x1*x2=4OA
再答:再问:学霸啊!!