已知直线x y-1=0与抛物线y=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:12:29
直线为为y=x-p/2直接用抛物线第一定义,准线为x=-p/2AB=AF+BF=x1+p/2+x2+p/2=x1+x2+pAB=4,所以x1+x2+p=4x=y+p/2带入y^2=2px,有y^2=2
抛物线C2:y^2=2px(p>0),此抛物线焦点坐标F2为:(p/2,0),抛物线C1:y=ax^2+bx,此抛物线焦点坐标F1为:[-b/2a,(4ac-b^2+1)/4a]∵抛物线C1:y=ax
(1)∵点K(-1,0)为直线l与抛物线C准线的交点∴-p/2=-1,p=2,由此能求出抛物线C的方程y^2=4x.(2)设A(x1,y1),B(x2,y2),D(x1,-y1),l的方程为x=my-
设切点P(x0,y0),∵y=ax2∴y′=2ax,则有:x0-y0-1=0(切点在切线上)①;y0=ax02(切点在曲线上)②2ax0=1(切点横坐标的导函数值为切线斜率)③;由①②③解得:a=14
y值相等,求出X,直接带入任意一个方程式
OA*OB=(x1+y1i)*(x2+y2i)=(x1+(kx1-1)i)*(x2+(kx2-1)i)=(1-k^2)x1*x2+k(x1+x2)-1+[2kx1x2-(x1+x2)]i=(1-k^2
(1)设切线方程为4x-y+b=0,与抛物线方程联立可得2x^2-4x-b=0,因此相切,则判别式为0,即16+8b=0,解得b=-2,所以所求切线方程为4x-y-2=0.(2)抛物线焦点为A(0,1
联立两方程,求出的点就是抛物线与直线的交点,没有则说明两线没有交点.
(1)抛物线焦点(0,1/4)所以设直线为y-1/4=kxy=kx+1/4带入抛物线kx+1/4=x^2x^2-kx-1/4=0根据韦达定理x1x2=-1/4/1=-1/4(2)AP=(x0-x1,y
题目有误,请改正.再问:双曲线改为x^2-y^2/3=1再答:(1)F(1,0),抛物线方程是y^2=4x,①(2)把l:y=k(x-2),即x=my+2,②其中m=1/k,代入①,得y^2-4my-
将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=
(1)联立x2=2pyy=x−1消去y得 x2-2px+2p=0因为抛物线C与直线y=x-1相切,所以△=4p2-8p=0…(3分)解得p=0(舍)或p=2…(4分)所以抛物线的
只需使ax^2+bx+c=k(x-1)-K^2/4,即ax^2+(b-k)x+k^2-(K^2+4K)a=0的判别式=0,即(1-a)k^2-(2B+4A)K-4AC+B^2=0,使该式恒成立,即与k
过M(-1,0)的直线L:y=ax+a与X²=4Y相交,得交点方程:X²=4ax+4a,即:X²=4ax+4a,X²-4ax-4a=0,要有两个交点:16a^2
直线y=ax+1恒过定点(0,1)该定点在抛物线内,所以不论a取何值(前提是a存在),都与抛物线有两交点.
若斜率不存在,则x=0若斜率存在,则设直线为y=kx+1...①y^2=x...②联解得:k^2*x^2+(2k-1)x+1=0又只有一个公共点即△=0即k=1/4所以直线为y=(1/4)x+1或x=
楼上的难道不会做了?由(-1,m)在直线y上得:m=-3则顶点为(-1,-3)设抛物线解析式y=a(x+1)^2-3将A(0,-1)带入,得a=2所以抛物线解析式为y=2x^2+4x-1
设过点A(0,1)的直线方程为y=kx+b把x=0y=1代入方程得1=b所以直线方程是:y=kx+1代入抛物线方程得:(kx+1)^2=2xk^2x^2+2kx+1=2xk^2x^2+(2k-2)x+
将(1,0)代入到抛物线y=ax²+6x-8中,得,a+6-8=0,解得a=2所以抛物线y=2x²+6x-8
(1)由y=2x²,y=4x消y得x=0或x=2故面积s=∫(0--2)4x-2x²dx=2x²-(2/3)x³|(0--2)=8/3(2)设直线方程为y=4x