已知直线y=kx 1与圆c:x2 y2=4交于ab两点,求弦ab中点m的轨迹方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:18:38
已知直线y=kx 1与圆c:x2 y2=4交于ab两点,求弦ab中点m的轨迹方程
已知直线l:y=2x-2,圆C:x2+y2+2x+4y+1=0,请判断直线l与圆C的位置关系,若相交,则求直线l被圆C所

整理圆方程得(x+1)2+(y+2)2=4∴圆心坐标为(-1,-2),半径r=2圆心到直线l的距离d=|−2+2−2|4+1=25<2∴直线与圆相交,设弦长为a,则a24+45=4解得a=855即直线

已知圆x2+y2-4x+4y+8-k=0关于直线x-y-2=0对称的圆是圆C,且圆C与直线3x+4y-40=0相切,求实

由题意知:(x-2)2+(y+2)2=k,若圆心(2,-2)关于直线x-y-2=0对称的点C为C(a,b)则b+2a−2=−1a+22−b−22−2=0解得 a=0b=0…(6分)∴圆C为:

已知圆C:x2+y2-8y+12=0直线L:ax+y+2a=0.问(1)当a为何值时直线L与圆C相切(2)当直线L与圆C

(1)C:x2+(y-4)2=4r=2圆心O(0,4)因为相切d=rd=(4+2a)/(根号下a2+1)=2a=-3/4(2)AB=2根号下(r2-d2)r2-d2=2d=根号下-12=(4+2a)/

已知圆O:x2+y2=1与直线l:y=kx+2

(1)当k=2时,直线l的方程为:2x-y+2=0-------(1分)设直线l与圆O的两个交点分别为A、B过圆心O(0,0)作OD⊥AB于点D,则OD=|2×0-0+2|22+(-1)2=25---

已知圆C:x2+y2=4,直线L:根号3*x+y-8=0;

用点到直线距离公式|-8|/√(3^2+1)=4√10/5<4因此直线与圆相交既然是相交,p到直线的最短距离等于0

已知圆C:x2+y2+2x+4y+1=0,则过圆心C且与原点之间距离最大的直线方程是______.

圆C的方程可以变为(x+1)2+(y+2)2=4故圆心的坐标为(-1,-2)圆心与原点连线的斜率为−2−0−1−0=2过圆心C且与原点之间距离最大的直线的斜率为− 12又该直线过圆心(-1,

已知圆C:x2+y2-2x-2y=0,直线l:y=kx,直线l与圆C相交于P,Q两点,点M(0,b)满足MP垂直MQ当b

MP斜率为(1-y1)/(-x1),MQ斜率为(1-y2)/(-x2)∵MP⊥MQ,∴(1-y1)/(-x1)*(1-y2)/(-x2)=-11-y1-y2+y1y2=-x1x2式子1将y=kx代入圆

已知⊙O:x2+y2=20与⊙C关于直线l:y=2x+5对称.

(1)已知⊙O:x2+y2=20圆心O(0,0),R=25,⊙O与⊙C关于直线l:y=2x+5对称.则直线OC的方程为:y=-12x,进一步建立方程组y=2x+5y=−12x,解得:x=−2y=1,利

已知圆C:x2+y2-6x-8y+21=0,直线L

解题思路:数形结合解题。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq

已知直线l:y=-2x+m,圆C:x2+y2+2y=0

圆心到直线的距离d=(2-1-m)/根号5.直线和圆相离,d>r=1,所以m

已知直线L与圆C:X2+Y2+2X-4Y+4=0相切,且圆点O与L的距离为1.

原点O吧?不然两个条件不是重复的吗?圆C:X2+Y2+2X-4Y+4=0(x+1)^2+(y-2)^2=1圆心C(-1,2)因为相切,圆心C到直线L的距离等于圆的半径=1设直线L的方程为y=kx+b,

已知,圆C:x2+y2-8x+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切 (2)当直线l

x²-8x+16+y²=4(x-4)²+y²=4表示圆心为(4,0)半径为2的圆根据题意圆心到直线的距离为半径时相切|4a+2a|/√(a²+1)=2

已知直线l:x+2y-2=0与圆c:x2+y2=2相交与ab两点、求弦长ab

圆的方程x²+y²-2y-1=0可化为:x²+(y-1)²=2,可得圆心坐标为(0,1),半径r=√2则圆心到直线l:2x-y-1=0的距离为:d=|-1-1|

已知圆C:x2+y2=r2与直线3x-4y+10=0相切,则圆C的半径r=______.

∵圆x2+y2=r2(r>0)的圆心为原点、半径为r,∴由直线3x-4y+10=0与圆x2+y2=r2(r>0)相切,得原点到直线的距离d=r,即r=1032+(-4)2=2.故答案为:2.

已知圆C:x2+y2=4 直线l:x+y=b

x²+y²=4x+y=b整理得2x²-2bx+b²-4=0(1)当直线和圆相切时,方程(1)有两个相等实根,所以△=0即4b²-4×2(b²

已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0,且直线l与圆C交于A,B两点

(1)将y=mx+1-m代入x²+(y-1)²=5得(1+m²)x²-2m²x+m²-5=0|AB|=√(1+m²)[(2m

已知抛物线方程x2=4y,圆方程x2+y2-2y=0,直线x-y+1=0与两曲线顺次相交于A、B、C、D,则|AB|+|

已知抛物线方程x2=4y,圆方程x2+y2-2y=0,直线x-y+1=0与两曲线顺次相交于A、B、C、D,则|AB|+|CD|=很明显x^2+y^2-2y=0 x^2+(y-1)^2=1&n

已知圆C的方程为x2+y2-2x+4y=0,直线l:2x-y+t=0.(1)已知直线l与圆C相切,求

C(1,-2),r=√5(1)2x-y+t=0d=|2*1+2+t|/√5=√5t=1,-9(2)d=√[r^2(-|MN|/2)^2]=√[5-(√15/2)^2]=√5/2|4+t|/√5=√5/

已知与曲线C:x2+y2-2x-2y+1=0相切的直线L

(x-1)^2+(y-1)^2=1圆心(1,1),半径=1直线x/a+y/b=1bx+ay-ab=0圆心到切线距离=半径所以|b+a-ab|/√(a^2+b^2)=1(a+b-ab)^2=a^2b^2

已知直线l0:x-y+2=0和圆C:x2+y2-8x+8y+14=0,设与直线l0和圆C都相切且半径最小的圆为圆M,直线

(1)∵圆C:x2+y2-8x+8y+14=0,即(x-4)2+(y+4)2=18,所以圆心C(4,-4),半径r0=32,圆心C到直线l0的距离d0=|4+4+2|2=52,则⊙M的半径r=d0−r