已知直角三角形ABC所在平面外一点S,且SA=SB=SC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:00:20
已知直角三角形ABC所在平面外一点S,且SA=SB=SC
立体几何证明直角三角形ABC所在平面外一点s 且 SA=SB=SC 点D为斜边AC中点 ① 求证 SD垂直平面ABC ②

①因为SA=SC所以△SAC为等边三角形,且D为AC中点所以SD┴AC在直角三角形ABC中因为BD为三角形的中线所以BD=1/2AC即BD=AD又因为SA=SB,SD=SD所以△ADS与△BDS全等,

P是△ABC所在平面外一点,O是点P在平面α上的射影,若△ABC是直角三角形,且PA=PB-PC

因为PO垂直于平面ABC,所以OA=OB=OC=根号下(PA平方-PO平方)=根号下(PB平方-PO平方)=根号下(PC平方-PO平方)所以O是三角形ABC的外心.

已知V是三角形ABC所在平面外一点,VB垂直平面ABC,平面VAB垂直于平面VAC.求证:三角形ABC是直角三角形.

这个题目用的是"两个相交平面都垂直于第三个平面那么,这两个平面的交线就垂直于第三个平面".这个问题不知道你的老师讲过没有.

如图,已知平面QBC与直线PA均垂直于直角三角形ABC所在平面,且PA=AB=AC=1

1)取BC中点为Q‘,连接QQ’,AQ',已知平面QBC⊥△ABC,所以QQ'⊥△ABC,所以QQ'⊥AQ';由题知PA⊥△ABC,所以PA⊥AQ',因为QQ'⊥AQ',PA⊥AQ',且QQ'与AQ'

已知p是直角三角形ABC所在平面外的一点,O是斜边AB的中点,并且PA=PB=PC,求证:PO垂直平面ABC

取BC中点D,连接OD,PD∵PB=PC,D为BC中点∴PD⊥BC∵O为AB中点,D为BC中点∴OD‖AC而AC⊥BC,故OD⊥BC,即PD⊥BC,OD⊥BC,所以BC⊥平面POD(定理:如果一条直线

如图,已知平面QBC与直线PA均垂直于直角三角形ABC所在平面,且PA=AB=AC=根号2

(1)求证:PA∥平面QBC;证明:∵PA⊥平面ABC            &

V是△ABC所在平面外一点,VB⊥平面ABC,平面VAB垂直平面VAC.求证△ABC是直角三角形

过B做VA的垂线垂足为E,因为两个面垂直,又有BE垂直于VA,所以BE垂直于面VAC,所以BE垂直AC,又有VB垂直AC,所以AC垂直于面VAB,所以AC垂直于AB,角BAC为直角,证毕再问:是不是一

已知三角形ABC中,角ABC=90度,P为三角形ABC所在平面外一点,PA=PB=PC.求证:平面PAC垂直平面ABC.

只OP垂直面ABC不能证明面PAC垂直面ABC啊回答:\x0d过一条垂线上的任意面垂直那个面,面PBC是垂线上的一个面,就垂直那个面了,我用的反证法,有个定理给你说,三角形斜边的中点到三顶点的距离相等

已知三角形ABC中,角ABC=90,P为三角形ABC所在平面外一点,PA=PB=PC,求证平面PAC垂直平面ABC.

过P作PO垂直平面ABC于O,则PA,PB,PC在平面ABC上的射影分别为OA,OB,OC,因为PA=PB=PC,所以OA=OB=OC(也可由直角三角形PAO,PBO,PCO全等得到),即O为三角形A

如图,已知平面QBC与直线PA均垂直于直角三角形ABC所在平面,且PA=AB=AC,求证PA平行于平面QBC

图呢再问:再答:做Q垂直BC的一条线QD所以QD垂直平面ABC所以QD垂直AB又因为PA垂直平面ABC所以PA垂直ABPAQD(属于平面QBC)都垂直AB所以PA平行QD所以PA平行平面QBC再问:若

如图,已知P为直角三角形ABC所在平面外一点,P在平面ABC上的射影O恰为斜边AC的中点,若PB=AB=1,BC=根号2

过点O作OD⊥AB于D,连接PD,OB∵PO⊥面ABC,OD⊥AB∴∠PDO就是二面角P-AB-C的平面角在Rt△ABC中,AB=1,BC=√2∴OB=1/2AC=√3/2在Rt△APOB中,OB=√

如图已知点P是直角三角形ABC所在平面外一点,AB为斜边且PA=PB=PC求证平面PAB⊥平面

你的辅助线证明你的思路是对的.PQ⊥AB利用PAB边长关系写出PQ²然后证明PQ²+CQ²=PC²(CQ=1/2AB)PCQ为直角三角形,PQ⊥QCPQC为两平

已知△ABC中,∠ABC=90°,P为△ABC所在平面外一点,PA=PB=PC,求证:平面PAC⊥平面ABC.

证明:取AC,BC的中点D,E,连结PD,PE,DE.显然DE为△ABC的中位线,∴DE‖AB.∵AB⊥BC,∴DE⊥BC.∵PB=PC,E为BC中点,∴PE⊥BC,∴BC⊥平面PDE,∴BC⊥PD.

S为直角三角形ABC所在平面外一点且SA和SB和SC相等,D为斜边AC中点

因为SA=SC,D为AC中点所以SD⊥AC又因为AC属于平面ABC所以SD⊥平面ABC

P是等腰直角三角形ABC所在平面外一点,斜边AB=PC,A是在平面ABC上的射影

(1)PC=AB=√2*AC PC与平面ABC的角就是角PAC,cos角PAC=AC/PC=AC/√2*AC=√2/2 所以角PAC=45°(2)过C作AB的垂线交AB于D,D即A

立体几何直角三角形abc所在平面外一S,且SA=SB=SC,点D为斜边AC的中点,求证:SD垂直平面ABC

证明:取AB中点E,连接DE,SED,E均为中点DE为△ABC的中位线DE‖BCBC⊥ABDE⊥ABSA=SBE为中点SE⊥ABAB⊥平面SEDAB⊥SD(1)D为AC中点SA=SCSD⊥AC(2)根

已知直角三角形ABC所在平面外有一点P .PA=PB=PC.D是斜边AB重点,求证PD⊥平面ABC

作PO垂直平面ABC于点O,因为PA=PB=PC,则:OA=OB=OC,又因三角形ABC为直角三角形,则点O即为三角形ABC的外心,即:O与点D重合,所以PD垂直平面ABC

1.已知在直角三角形ABC中,AB=3,AC=4∠BAC=60°,P是△ABC所在平面外一点,若PA⊥平面ABC,且PA

⑴、作AC中点,设为E,连结DE、BE,可以得到BE⊥AC,且DE‖PC,而PC⊥AC,所以DE⊥AC,那就有AC⊥平面BDE,从而AC⊥BD.⑵、过点P作PO⊥平面ABC,垂足为O,由于AC⊥平面A

已知直角三角形abc斜边ab在平面阿尔法内,ac,bc分别与阿尔法成30度,45度角,则阿尔法与三角形abc所在平面所成

过点C做CO垂直平面阿尔法于O,连接AO,BO,设CO为1做CH垂直AB,连接HO,角CHO为所求的二面角AC=2,BC=根号3,AB=根号6因为AC*BC=CH*AB,可算得CH=三分之二乘根号3s

直角三角形ABC,所在平面外一点S,SA=SB=SC

取AB中点为E连DE,SE因直角三角形ABC,所以AB⊥BC,因AE=EB,AD=DC,所以ED‖BC即DE⊥AB又因SA=SC,D为中点所以SD⊥AC即面SDE⊥面ABC所以SD⊥BD,又SD⊥AC